
deepgraph Documentation
Release 0.2.3

Dominik Traxl

Jul 19, 2023

Contents

1 Contents 3
1.1 What is DeepGraph . 3
1.2 Installation . 4
1.3 Tutorials . 8
1.4 API Reference . 66
1.5 Contact . 104

2 Indices and tables 105

Index 107

i

ii

deepgraph Documentation, Release 0.2.3

Release 0.2.3

Date Jul 19, 2023

Code GitHub

Contents 1

https://github.com/deepgraph/deepgraph
https://anaconda.org/conda-forge/deepgraph
https://anaconda.org/conda-forge/deepgraph
http://deepgraph.readthedocs.io/en/latest/?badge=latest
https://badge.fury.io/py/DeepGraph

deepgraph Documentation, Release 0.2.3

2 Contents

CHAPTER 1

Contents

1.1 What is DeepGraph

DeepGraph is an open source Python implementation of a new network representation introduced here. Its purpose is
to facilitate data analysis by interpreting data in terms of network theory.

The basis of this software package is Pandas, a fast and flexible data analysis tool for the Python programming lan-
guage. Utilizing one of its primary data structures, the DataFrame, we represent objects (i.e. the nodes of a network)
by one DataFrame, and their pairwise relations (i.e. the edges of a network) by another DataFrame.

One of the main features of DeepGraph is an efficient and scalable creation of edges. Given a set of nodes in the
form of a DataFrame (or an on disc HDFStore), DeepGraph’s core class provides methods to iteratively compute
pairwise relations between the nodes (e.g. similarity/distance measures) using arbitrary, user-defined functions on the
nodes’ features. These methods provide arguments to parallelize the computation and control memory consumption,
making them suitable for very large data-sets and adjustable to whatever hardware you have at hand (from netbooks
to cluster architectures).

Furthermore, once a graph is constructed, DeepGraph allows you to partition its nodes, edges or the entire graph
by the graph’s properties and labels, enabling the aggregation, computation and allocation of information on and
between arbitrary groups of nodes. These methods also let you express elaborate queries on the information contained
in a deep graph.

DeepGraph is not meant to replace or compete with already existing Python network libraries, such as NetworkX or
graph_tool, but rather to combine and extend their capabilities with the merits of Pandas. For that matter, the core
class of DeepGraph provides interfacing methods to convert to common network representations and graph objects of
popular Python network packages.

Deepgraph also implements a number of useful plotting methods, including drawings on geographical map projections.

It’s also possible to represent multilayer networks by deep graphs. We’re thinking of implementing an interface to a
suitable package dedicated to the analysis of multilayer networks.

Note: Please acknowledge the authors and cite the use of this software when results are used in publications or
published elsewhere. Various citation formats are available here: https://aip.scitation.org/action/showCitFormats?
type=show&doi=10.1063%2F1.4952963

3

https://www.python.org/
http://arxiv.org/abs/1604.00971
https://en.wikipedia.org/wiki/Data_analysis
https://en.wikipedia.org/wiki/Network_theory
http://pandas.pydata.org/
http://pandas.pydata.org/pandas-docs/stable/generated/pandas.DataFrame.html
http://pandas.pydata.org/pandas-docs/stable/io.html#hdf5-pytables
https://networkx.github.io/
https://graph-tool.skewed.de/
https://deepgraph.readthedocs.io/en/latest/api_reference.html#plotting-methods
https://aip.scitation.org/action/showCitFormats?type=show&doi=10.1063%2F1.4952963
https://aip.scitation.org/action/showCitFormats?type=show&doi=10.1063%2F1.4952963

deepgraph Documentation, Release 0.2.3

For your convenience, you can find the BibTex entry below:

@Article{traxl-2016-deep,
author = {Dominik Traxl AND Niklas Boers AND J\"urgen Kurths},
title = {Deep Graphs - A general framework to represent and analyze

heterogeneous complex systems across scales},
journal = {Chaos},
year = {2016},
volume = {26},
number = {6},
eid = {065303},
doi = {http://dx.doi.org/10.1063/1.4952963},
eprinttype = {arxiv},
eprintclass = {physics.data-an, cs.SI, physics.ao-ph, physics.soc-ph},
eprint = {http://arxiv.org/abs/1604.00971v1},
version = {1},
date = {2016-04-04},
url = {http://arxiv.org/abs/1604.00971v1}

}

To get started, have a look at

• Installation of DeepGraph

• DeepGraph’s Tutorials

• API Reference

Want to share feedback, or contribute?

So far the package has only been developed by me, a fact that I would like to change very much. So if you feel like
contributing in any way, shape or form, please feel free to contact me, report bugs, create pull requestes, milestones,
etc. You can contact me via email: dominik.traxl@posteo.org

Note: This documentation assumes general familiarity with NumPy and Pandas. If you haven’t used these packages,
do invest some time in learning about them first.

Note: DeepGraph is free software; you can redistribute it and/or modify it under the terms of the BSD License. We
highly welcome contributions from the community.

1.2 Installation

1.2.1 Quick Install

DeepGraph can be installed via pip from PyPI

$ pip install deepgraph

Depending on your system, you may need root privileges. On UNIX-based operating systems (Linux, Mac OS X etc.)
this is achieved with sudo

$ sudo pip install deepgraph

4 Chapter 1. Contents

mailto:dominik.traxl@posteo.org
http://www.numpy.org/
http://pandas.pydata.org/
https://pypi.python.org/pypi/deepgraph

deepgraph Documentation, Release 0.2.3

Alternatively, if you’re using Conda, install with

$ conda install -c conda-forge deepgraph

1.2.2 Installing from Source

Alternatively, you can install DeepGraph from source by downloading a source archive file (tar.gz or zip).

Source Archive File

1. Download the source (tar.gz or zip file) from https://pypi.python.org/pypi/deepgraph/ or https://github.com/
deepgraph/deepgraph/

2. Unpack and change directory to the source directory (it should have the files README.rst and setup.py).

3. Run python setup.py install to build and install. As a developer, you may want to install using
cython: python setup.py install --use-cython.

4. (Optional) Run py.test to execute the tests if you have pytest installed.

GitHub

1. Clone the deepgraph repostitory

git clone https://github.com/deepgraph/deepgraph.git

2. Change directory to deepgraph

3. Run python setup.py install to build and install. As a developer, you may want to install using
cython: python setup.py install --use-cython.

4. (Optional) Run py.test to execute the tests if you have pytest installed.

Installing without Root Privileges

If you don’t have permission to install software on your system, you can install into another directory using the
--user, --prefix, or --home flags to setup.py.

For example

$ python setup.py install --prefix=/home/username/python

or

$ python setup.py install --home=~

or

$ python setup.py install --user

Note: If you didn’t install in the standard Python site-packages directory you will need to set your PYTHONPATH
variable to the alternate location. See here for further details.

1.2. Installation 5

http://conda.pydata.org/docs/
https://pypi.python.org/pypi/deepgraph/
https://github.com/deepgraph/deepgraph/
https://github.com/deepgraph/deepgraph/
https://pypi.python.org/pypi/pytest
https://github.com/deepgraph/deepgraph.git
https://pypi.python.org/pypi/pytest
https://docs.python.org/2/install/index.html#modifying-python-s-search-path

deepgraph Documentation, Release 0.2.3

1.2.3 Requirements

The easiest way to get Python and the required/optional packages is to use Conda (or Miniconda), a cross-platform
(Linux, Mac OS X, Windows) Python distribution for data analytics and scientific computing.

Python

To use DeepGraph you need Python 2.7, 3.4 or later.

Pandas

Pandas is an open source, BSD-licensed library providing high-performance, easy-to-use data structures and data
analysis tools for the Python programming language.

Pandas is the core dependency of DeepGraph, and it is highly recommended to install the recommended and optional
dependencies of Pandas as well.

NumPy

NumPy is the fundamental package for scientific computing with Python.

Needed for internal operations.

1.2.4 Recommended Packages

The following are recommended packages that DeepGraph can use to provide additional functionality.

Matplotlib

Matplotlib is a python 2D plotting library which produces publication quality figures in a variety of hardcopy formats
and interactive environments across platforms.

Allows you to use the plotting methods of DeepGraph.

Matplotlib Basemap Toolkit

basemap is an add-on toolkit for matplotlib that lets you plot data on map projections with coastlines, lakes, rivers and
political boundaries. See the basemap tutorial for documentation and examples of what it can do.

Used by plot_map and plot_map_generator to plot networks on map projections.

PyTables

PyTables is a package for managing hierarchical datasets and designed to efficiently and easily cope with extremely
large amounts of data.

Necessary for HDF5-based storage of pandas DataFrames. DeepGraph’s core class may be initialized with a
HDFStore containing a node table in order to iteratively create edges directly from disc (see create_edges and
create_edges_ft).

6 Chapter 1. Contents

http://conda.pydata.org/docs/
http://conda.pydata.org/miniconda.html
https://www.python.org/
http://pandas.pydata.org/
http://pandas.pydata.org/pandas-docs/stable/install.html#recommended-dependencies
http://pandas.pydata.org/pandas-docs/stable/install.html#optional-dependencies
http://www.numpy.org/
http://matplotlib.org/
http://matplotlib.org/basemap/
https://basemaptutorial.readthedocs.org/en/latest/
http://www.pytables.org/

deepgraph Documentation, Release 0.2.3

SciPy

SciPy is a Python-based ecosystem of open-source software for mathematics, science, and engineering.

Allows you to convert from DeepGraph’s network representation to sparse adjacency matrices (see
return_cs_graph).

NetworkX

NetworkX is a Python language software package for the creation, manipulation, and study of the structure, dynamics,
and functions of complex networks.

Allows you to convert from DeepGraph’s network representation to NetworkX’s network representation (see
return_nx_graph).

Graph-Tool

graph_tool is an efficient Python module for manipulation and statistical analysis of graphs (a.k.a. networks).

Allows you to convert from DeepGraph’s network representation to Graph-Tool’s network representation (see
return_gt_graph).

Conda users can install graph_tool by adding the following channels to their ~/.condarc

$ conda config --add channels conda-forge
$ conda config --add channels ostrokach-forge

Then, install graph-tool

$ conda install graph-tool

You can test your graph-tool installation by

$ python -c "from graph_tool.all import *"

1.2.5 Optional Packages

The following packages are considered to provide very useful tools and methods.

Scikit-Learn

sklearn is a Python module integrating classical machine learning algorithms in the tightly-knit world of scientific
Python packages (numpy, scipy, matplotlib).

Sklearn-pandas

sklearn-pandas provides a bridge between Scikit-Learn’s machine learning methods and pandas-style Data Frames.

1.2. Installation 7

http://www.scipy.org/
https://networkx.github.io/
https://graph-tool.skewed.de/
http://scikit-learn.org/stable/
https://github.com/paulgb/sklearn-pandas

deepgraph Documentation, Release 0.2.3

1.3 Tutorials

1.3.1 10 Minutes to DeepGraph

[ipython notebook] [python script] [data]

This is a short introduction to DeepGraph. In the following, we demonstrate DeepGraph’s core functionalities by a toy
data-set, “flying balls”.

First of all, we need to import some packages

for plots
import matplotlib.pyplot as plt

the usual
import numpy as np
import pandas as pd

import deepgraph as dg

notebook display
%matplotlib inline
plt.rcParams['figure.figsize'] = 8, 6
pd.options.display.max_rows = 10
pd.set_option('expand_frame_repr', False)

Loading Toy Data

Then, we need data in the form of a pandas DataFrame, representing the nodes of our graph

v = pd.read_csv('flying_balls.csv', index_col=0)
print(v)

time x y ball_id
0 0 1692.000000 0.000000 0
1 0 8681.000000 0.000000 1
2 0 490.000000 0.000000 2
3 0 7439.000000 0.000000 3
4 0 4998.000000 0.000000 4
...
1163 45 2812.552734 16.503178 39
1164 46 5686.915998 14.161693 10
1165 46 3161.729086 19.381823 14
1166 46 5594.233413 57.701712 37
1167 47 5572.216748 20.588750 37

[1168 rows x 4 columns]

The data consists of 1168 space-time measurements of 50 different toy balls in two-dimensional space. Each space-
time measurement (i.e. row of v) represents a node.

Let’s plot the data such that each ball has it’s own color

plt.scatter(v.x, v.y, s=v.time, c=v.ball_id)

8 Chapter 1. Contents

http://pandas.pydata.org/pandas-docs/stable/generated/pandas.DataFrame.html

deepgraph Documentation, Release 0.2.3

Creating Edges

In order to create edges between these nodes, we now initiate a dg.DeepGraph instance

g = dg.DeepGraph(v)
g

<DeepGraph object, with n=1168 node(s) and m=0 edge(s) at 0x7facf3b35dd8>

and use it to create edges between the nodes given by g.v . For that matter, we may define a connector function

def x_dist(x_s, x_t):
dx = x_t - x_s
return dx

and pass it to g.create_edges in order to compute the distance in the x-coordinate of each pair of nodes

g.create_edges(connectors=x_dist)
g

<DeepGraph object, with n=1168 node(s) and m=681528 edge(s) at 0x7facf3b35dd8>

print(g.e)

1.3. Tutorials 9

deepgraph Documentation, Release 0.2.3

dx
s t
0 1 6989.000000

2 -1202.000000
3 5747.000000
4 3306.000000
5 2812.000000

... ...
1164 1166 -92.682585

1167 -114.699250
1165 1166 2432.504327

1167 2410.487662
1166 1167 -22.016665

[681528 rows x 1 columns]

Let’s say we’re only interested in creating edges between nodes with a x-distance smaller than 1000. Then we may
additionally define a selector

def x_dist_selector(dx, sources, targets):
dxa = np.abs(dx)
sources = sources[dxa <= 1000]
targets = targets[dxa <= 1000]
return sources, targets

and pass both the connector and selector to g.create_edges

g.create_edges(connectors=x_dist, selectors=x_dist_selector)
g

<DeepGraph object, with n=1168 node(s) and m=156938 edge(s) at 0x7facf3b35dd8>

print(g.e)

dx
s t
0 6 416.000000

7 848.000000
19 -973.000000
24 437.000000
38 778.000000

... ...
1162 1167 -44.033330
1163 1165 349.176351
1164 1166 -92.682585

1167 -114.699250
1166 1167 -22.016665

[156938 rows x 1 columns]

There is, however, a much more efficient way of creating edges that involve a simple distance threshold such as the
one above

10 Chapter 1. Contents

deepgraph Documentation, Release 0.2.3

Creating Edges on a FastTrack

In order to efficiently create edges including a selection of edges via a simple distance threshold as above, one should
use the create_edges_ft method. It relies on a sorted DataFrame, so we need to sort g.v first

g.v.sort_values('x', inplace=True)

g.create_edges_ft(ft_feature=('x', 1000))
g

<DeepGraph object, with n=1168 node(s) and m=156938 edge(s) at 0x7facf3b35dd8>

Let’s compare the efficiency

%timeit -n3 -r3 g.create_edges(connectors=x_dist, selectors=x_dist_selector)

3 loops, best of 3: 557 ms per loop

%timeit -n3 -r3 g.create_edges_ft(ft_feature=('x', 1000))

3 loops, best of 3: 167 ms per loop

The create_edges_ft method also accepts connectors and selectors as input. Let’s connect only those measure-
ments that are close in space and time

def y_dist(y_s, y_t):
dy = y_t - y_s
return dy

def time_dist(time_t, time_s):
dt = time_t - time_s
return dt

def y_dist_selector(dy, sources, targets):
dya = np.abs(dy)
sources = sources[dya <= 100]
targets = targets[dya <= 100]
return sources, targets

def time_dist_selector(dt, sources, targets):
dta = np.abs(dt)
sources = sources[dta <= 1]
targets = targets[dta <= 1]
return sources, targets

g.create_edges_ft(ft_feature=('x', 100),
connectors=[y_dist, time_dist],
selectors=[y_dist_selector, time_dist_selector])

g

<DeepGraph object, with n=1168 node(s) and m=1899 edge(s) at 0x7facf3b35dd8>

print(g.e)

1.3. Tutorials 11

deepgraph Documentation, Release 0.2.3

dt dy ft_r
s t
890 867 -1 19.311136 33.415831
867 843 -1 17.678482 33.415831
843 818 -1 16.045829 33.415831
818 792 -1 14.413176 33.415831
792 766 -1 12.780523 33.415831
...
244 203 -1 -10.825226 15.455612
203 159 -1 -12.457879 15.455612
159 114 -1 -14.090532 15.455612
114 65 -1 -15.723185 15.455612
65 16 -1 -17.355838 15.455612

[1899 rows x 3 columns]

We can now plot the flying balls and the edges we just created with the plot_2d method

obj = g.plot_2d('x', 'y', edges=True,
kwds_scatter={'c': g.v.ball_id, 's': g.v.time})

obj['ax'].set_xlim(1000,3000)

12 Chapter 1. Contents

deepgraph Documentation, Release 0.2.3

Graph Partitioning

The DeepGraph class also offers methods to partition nodes, edges and an entire graph. See the docstrings and
the other tutorials for details and examples.

Graph Interfaces

Furthermore, you may inspect the docstrings of return_cs_graph, return_nx_graph and
return_gt_graph to see how to convert from DeepGraph’s DataFrame representation of a network to
sparse adjacency matrices, NetworkX’s network representation and graph_tool’s network representation.

Plotting Methods

DeepGraph also offers a number of useful Plotting methods. See plotting methods for details and have a look at the
other tutorials for examples.

1.3.2 Computing Very Large Correlation Matrices in Parallel

[ipython notebook] [python script]

Note: Please acknowledge the authors and cite the use of this software when results are used in publications or
published elsewhere. Various citation formats are available here: https://aip.scitation.org/action/showCitFormats?
type=show&doi=10.1063%2F1.4952963

For your convenience, you can find the BibTex entry below:

@Article{traxl-2016-deep,
author = {Dominik Traxl AND Niklas Boers AND J\"urgen Kurths},
title = {Deep Graphs - A general framework to represent and analyze

heterogeneous complex systems across scales},
journal = {Chaos},
year = {2016},
volume = {26},
number = {6},
eid = {065303},
doi = {http://dx.doi.org/10.1063/1.4952963},
eprinttype = {arxiv},
eprintclass = {physics.data-an, cs.SI, physics.ao-ph, physics.soc-ph},
eprint = {http://arxiv.org/abs/1604.00971v1},
version = {1},
date = {2016-04-04},
url = {http://arxiv.org/abs/1604.00971v1}

}

In this short tutorial, we’ll demonstrate how DeepGraph can be used to efficiently compute very large correlation
matrices in parallel, with full control over RAM usage.

Assume you have a set of n_samples samples, each comprised of n_features features and you want to compute
the Pearson correlation coefficients between all pairs of features (for the Spearman’s rank correlation coefficients, see
the Note-box below). If your data is small enough, you may use scipy.stats.pearsonr or numpy.corrcoef, but for large
data, neither of these methods is feasible. Scipy’s pearsonr would be very slow, since you’d have to compute pair-wise
correlations in a double loop, and numpy’s corrcoef would most likely blow your RAM.

1.3. Tutorials 13

https://aip.scitation.org/action/showCitFormats?type=show&doi=10.1063%2F1.4952963
https://aip.scitation.org/action/showCitFormats?type=show&doi=10.1063%2F1.4952963
https://en.wikipedia.org/wiki/Pearson_correlation_coefficient
https://en.wikipedia.org/wiki/Spearman's_rank_correlation_coefficient
https://docs.scipy.org/doc/scipy/reference/generated/scipy.stats.pearsonr.html#scipy.stats.pearsonr
https://docs.scipy.org/doc/numpy/reference/generated/numpy.corrcoef.html

deepgraph Documentation, Release 0.2.3

Using DeepGraph’s create_edges method, you can compute all pair-wise correlations efficiently. In this tutorial,
the data is stored on disc and only the relevant subset of features for each iteration will be loaded into memory by
the computing nodes. Parallelization is achieved by using python’s standard library multiprocessing, but it should be
straight-forward to modify the code to accommodate other parallelization libraries. It should also be straight-forward
to modify the code in order to compute other correlation/distance/similarity-measures between a set of features.

First of all, we need to import some packages

data i/o
import os

compute in parallel
from multiprocessing import Pool

the usual
import numpy as np
import pandas as pd

import deepgraph as dg

Let’s create a set of variables and store it as a 2d-matrix X (shape=(n_features, n_samples)) on disc. To
speed up the computation of the correlation coefficients later on, we whiten each variable.

create observations
from numpy.random import RandomState
prng = RandomState(0)
n_features = int(5e3)
n_samples = int(1e2)
X = prng.randint(100, size=(n_features, n_samples)).astype(np.float64)

uncomment the next line to compute ranked variables for Spearman's correlation
→˓coefficients
X = X.argsort(axis=1).argsort(axis=1)

whiten variables for fast parallel computation later on
X = (X - X.mean(axis=1, keepdims=True)) / X.std(axis=1, keepdims=True)

save in binary format
np.save('samples', X)

Note: On the computation of the Spearman’s rank correlation coefficients: Since the Spearman correlation coefficient
is defined as the Pearson correlation coefficient between the ranked variables, it suffices to uncomment the indicated
line in the above code-block in order to compute the Spearman’s rank correlation coefficients in the following.

Now we can compute the pair-wise correlations using DeepGraph’s create_edges method. Note that the node
table v only stores references to the mem-mapped array containing the samples.

parameters (change these to control RAM usage)
step_size = 1e5
n_processes = 100

load samples as memory-map
X = np.load('samples.npy', mmap_mode='r')

create node table that stores references to the mem-mapped samples
v = pd.DataFrame({'index': range(X.shape[0])})

(continues on next page)

14 Chapter 1. Contents

https://docs.python.org/3.6/library/multiprocessing.html
https://en.wikipedia.org/wiki/Spearman's_rank_correlation_coefficient

deepgraph Documentation, Release 0.2.3

(continued from previous page)

connector function to compute pairwise pearson correlations
def corr(index_s, index_t):

features_s = X[index_s]
features_t = X[index_t]
corr = np.einsum('ij,ij->i', features_s, features_t) / n_samples
return corr

index array for parallelization
pos_array = np.array(np.linspace(0, n_features*(n_features-1)//2, n_processes),
→˓dtype=int)

parallel computation
def create_ei(i):

from_pos = pos_array[i]
to_pos = pos_array[i+1]

initiate DeepGraph
g = dg.DeepGraph(v)

create edges
g.create_edges(connectors=corr, step_size=step_size,

from_pos=from_pos, to_pos=to_pos)

store edge table
g.e.to_pickle('tmp/correlations/{}.pickle'.format(str(i).zfill(3)))

computation
if __name__ == '__main__':

os.makedirs("tmp/correlations", exist_ok=True)
indices = np.arange(0, n_processes - 1)
p = Pool()
for _ in p.imap_unordered(create_ei, indices):

pass

Let’s collect the computed correlation values and store them in an hdf file.

store correlation values
files = os.listdir('tmp/correlations/')
files.sort()
store = pd.HDFStore('e.h5', mode='w')
for f in files:

et = pd.read_pickle('tmp/correlations/{}'.format(f))
store.append('e', et, format='t', data_columns=True, index=False)

store.close()

Let’s have a quick look at the correlations.

load correlation table
e = pd.read_hdf('e.h5')
print(e)

corr
s t
0 1 -0.006066

(continues on next page)

1.3. Tutorials 15

deepgraph Documentation, Release 0.2.3

(continued from previous page)

2 0.094063
3 -0.025529
4 0.074080
5 0.035490
6 0.005221
7 0.032064
8 0.000378
9 -0.049318
10 -0.084853
11 0.026407
12 0.028543
13 -0.013347
14 -0.180113
15 0.151164
16 -0.094398
17 -0.124582
18 -0.000781
19 -0.044138
20 -0.193609
21 0.003877
22 0.048305
23 0.006477
24 -0.021291
25 -0.070756
26 -0.014906
27 -0.197605
28 -0.103509
29 0.071503
30 0.120718

... ...
4991 4998 -0.012007

4999 -0.252836
4992 4993 0.202024

4994 -0.046088
4995 -0.028314
4996 -0.052319
4997 -0.010797
4998 -0.025321
4999 -0.093721

4993 4994 -0.027568
4995 0.045602
4996 -0.102075
4997 0.035370
4998 -0.069946
4999 -0.031208

4994 4995 0.108063
4996 0.144441
4997 0.078353
4998 -0.024799
4999 -0.026432

4995 4996 -0.019991
4997 -0.178458
4998 -0.162406
4999 0.102835

4996 4997 0.115812
4998 -0.061167
4999 0.018606

(continues on next page)

16 Chapter 1. Contents

deepgraph Documentation, Release 0.2.3

(continued from previous page)

4997 4998 -0.151932
4999 -0.271358

4998 4999 0.106453

[12497500 rows x 1 columns]

And finally, let’s see where most of the computation time is spent.

g = dg.DeepGraph(v)
p = %prun -r g.create_edges(connectors=corr, step_size=step_size)

p.print_stats(20)

244867 function calls (239629 primitive calls) in 14.193 seconds

Ordered by: internal time
List reduced from 541 to 20 due to restriction <20>

ncalls tottime percall cumtime percall filename:lineno(function)
250 9.355 0.037 9.361 0.037 memmap.py:334(__getitem__)
125 1.584 0.013 1.584 0.013 {built-in method numpy.core.multiarray.

→˓c_einsum}
125 1.012 0.008 12.013 0.096 deepgraph.py:4558(map)

2 0.581 0.290 0.581 0.290 {method 'get_labels' of 'pandas._libs.
→˓hashtable.Int64HashTable' objects}

1 0.301 0.301 0.414 0.414 multi.py:795(_engine)
5 0.157 0.031 0.157 0.031 {built-in method numpy.core.multiarray.

→˓concatenate}
250 0.157 0.001 0.170 0.001 internals.py:5017(_stack_arrays)

2 0.105 0.053 0.105 0.053 {pandas._libs.algos.take_1d_int64_int64}
889 0.094 0.000 0.094 0.000 {method 'reduce' of 'numpy.ufunc'

→˓objects}
125 0.089 0.001 12.489 0.100 deepgraph.py:5294(_select_and_return)
125 0.074 0.001 0.074 0.001 {deepgraph._triu_indices._reduce_triu_

→˓indices}
125 0.066 0.001 0.066 0.001 {built-in method deepgraph._triu_

→˓indices._triu_indices}
4 0.038 0.009 0.038 0.009 {built-in method pandas._libs.algos.

→˓ensure_int16}
125 0.033 0.000 10.979 0.088 <ipython-input-3-26c4f59cd911>:12(corr)

2 0.028 0.014 0.028 0.014 function_base.py:4703(delete)
1 0.027 0.027 14.163 14.163 deepgraph.py:4788(_matrix_iterator)
1 0.027 0.027 0.113 0.113 multi.py:56(_codes_to_ints)

45771/45222 0.020 0.000 0.043 0.000 {built-in method builtins.isinstance}
1 0.019 0.019 14.193 14.193 deepgraph.py:183(create_edges)
2 0.012 0.006 0.700 0.350 algorithms.py:576(factorize)

As you can see, most of the time is spent by getting the requested features in the corr-function, followed by computing
the correlation values themselves.

1.3.3 Building a DeepGraph of Extreme Precipitation

[ipython notebook] [python script] [data]

In the following we build a deep graph of a high-resolution dataset of precipitation measurements.

1.3. Tutorials 17

deepgraph Documentation, Release 0.2.3

The goal is to first detect spatiotemporal clusters of extreme precipitation events and then to create families of these
clusters based on a spatial correlation measure. Finally, we create and plot some informative (intersection) partitions
of the deep graph.

For further details see section V of the original paper: https://arxiv.org/abs/1604.00971

First of all, we need to import some packages

data i/o
import os
import xarray

for plots
import matplotlib.pyplot as plt

the usual
import numpy as np
import pandas as pd

import deepgraph as dg

notebook display
from IPython.display import HTML
%matplotlib inline
plt.rcParams['figure.figsize'] = 8, 6
pd.options.display.max_rows = 10
pd.set_option('expand_frame_repr', False)

Selecting and Preprocessing the Precipitation Data

Selection

If you want to select your own spatiotemporal box of precipitation events, you may follow the instructions below and
change the filename in the next box of code.

• Go to https://disc.gsfc.nasa.gov/datasets/TRMM_3B42_V7/summary?keywords=TRMM_3B42_V7

• click on “Simple Subset Wizard”

• select the “Date Range” (and if desired a “Spatial Bounding Box”) you’re interested in

• click on “Search for Data Sets”

• expand the list by clicking on the “+” symbol

• mark the check box “precipitation”

• (optional, but recommended) click on the selector to change from “netCDF” to “gzipped netCDF”

• click on “Subset Selected Data Sets”

• click on “View Subset Results”

• right click on the “Get list of URLs for this subset in a file” link, and choose “Save Link As. . . ”

• the downloaded file will have a name similar to “SSW_download_2016-05-
03T20_19_28_23621_2oIe06xp.inp”. Note which directory the downloaded file is saved to, and in your
Unix shell, set your current working directory to that directory.

• register an account to get authentication credentials using these instructions: https://disc.gsfc.nasa.gov/
information/howto/5761bc6a5ad5a18811681bae?keywords=wget

18 Chapter 1. Contents

https://arxiv.org/abs/1604.00971
https://disc.gsfc.nasa.gov/datasets/TRMM_3B42_V7/summary?keywords=TRMM_3B42_V7
https://disc.gsfc.nasa.gov/information/howto/5761bc6a5ad5a18811681bae?keywords=wget
https://disc.gsfc.nasa.gov/information/howto/5761bc6a5ad5a18811681bae?keywords=wget

deepgraph Documentation, Release 0.2.3

• get the files via

os.system("wget --content-disposition --directory-prefix=tmp --load-cookies ~/.urs_
→˓cookies --save-cookies ~/.urs_cookies --auth-no-challenge=on --keep-session-cookies
→˓-i SSW_download_2016-05-03T20_19_28_23621_2oIe06xp.inp")

Preprocessing

Next, we need to convert the downloaded netCDF files to a pandas DataFrame, which we can then use to initiate a
dg.DeepGraph

choose "wet times" threshold
r = .1
choose "extreme" precipitation threshold
p = .9

v_list = []
for file in os.listdir('tmp'):

if file.startswith('3B42.'):

open the downloaded netCDF file
unfortunately, we have to decode times ourselves, since
the format of the downloaded files doesn't work
see also: https://github.com/pydata/xarray/issues/521
f = xarray.open_dataset('tmp/{}'.format(file), decode_times=False)

create integer-based (x,y) coordinates
f['x'] = (('longitude'), np.arange(len(f.longitude)))
f['y'] = (('latitude'), np.arange(len(f.latitude)))

convert to pd.DataFrame
vt = f.to_dataframe()

we only consider "wet times", pcp >= 0.1mm/h
vt = vt[vt.pcp >= r]

reset index
vt.reset_index(inplace=True)

add correct times
ftime = f.time.units.split()[2:]
year, month, day = ftime[0].split('-')
hour = ftime[1]
time = pd.datetime(int(year), int(month), int(day), int(hour))
vt['time'] = time

compute "area" for each event
vt['area'] = 111**2 * .25**2 * np.cos(2*np.pi*vt.latitude / 360.)

compute "volume of water precipitated" for each event
vt['vol'] = vt.pcp * 3 * vt.area

set dtypes -> economize ram
vt['pcp'] = vt['pcp'] * 100
vt['pcp'] = vt['pcp'].astype(np.uint16)
vt['latitude'] = vt['latitude'].astype(np.float16)

(continues on next page)

1.3. Tutorials 19

http://pandas.pydata.org/pandas-docs/stable/generated/pandas.DataFrame.html

deepgraph Documentation, Release 0.2.3

(continued from previous page)

vt['longitude'] = vt['longitude'].astype(np.float16)
vt['area'] = vt['area'].astype(np.uint16)
vt['vol'] = vt['vol'].astype(np.uint32)
vt['x'] = vt['x'].astype(np.uint16)
vt['y'] = vt['y'].astype(np.uint16)

append to list
v_list.append(vt)
f.close()

concatenate the DataFrames
v = pd.concat(v_list)

append a column indicating geographical locations (i.e., supernode labels)
v['g_id'] = v.groupby(['longitude', 'latitude']).grouper.group_info[0]
v['g_id'] = v['g_id'].astype(np.uint32)

select `p`th percentile of precipitation events for each geographical location
v = v.groupby('g_id').apply(lambda x: x[x.pcp >= x.pcp.quantile(p)])

append integer-based time
dtimes = pd.date_range(v.time.min(), v.time.max(), freq='3H')
dtdic = {dtime: itime for itime, dtime in enumerate(dtimes)}
v['itime'] = v.time.apply(lambda x: dtdic[x])
v['itime'] = v['itime'].astype(np.uint16)

sort by time
v.sort_values('time', inplace=True)

set unique node index
v.set_index(np.arange(len(v)), inplace=True)

shorten column names
v.rename(columns={'pcp': 'r',

'latitude': 'lat',
'longitude': 'lon',
'time': 'dtime',
'itime': 'time'},

inplace=True)

The created DataFrame of extreme precipitation measurements looks like this

print(v)

lat lon dtime r x y area vol g_id time
0 15.125 -118.125 2004-08-20 1084 28 101 743 24174 5652 0
1 44.875 -30.625 2004-08-20 392 378 220 545 6433 85341 0
2 45.125 -30.625 2004-08-20 454 378 221 543 7416 85342 0
3 45.375 -30.625 2004-08-20 909 378 222 540 14767 85343 0
4 45.625 -30.625 2004-08-20 907 378 223 538 14669 85344 0
...
382306 26.875 -46.625 2004-09-27 503 314 148 686 10385 70380 304
382307 38.375 -37.125 2004-09-27 453 352 194 603 8222 79095 304
382308 8.125 -105.125 2004-09-27 509 80 73 762 11663 17007 304
382309 21.875 -42.875 2004-09-27 260 329 128 714 5595 73875 304
382310 6.625 -111.125 2004-09-27 192 56 67 764 4428 11790 304

(continues on next page)

20 Chapter 1. Contents

http://pandas.pydata.org/pandas-docs/stable/generated/pandas.DataFrame.html

deepgraph Documentation, Release 0.2.3

(continued from previous page)

[382311 rows x 10 columns]

We identify each row of this table as a node of our DeepGraph

g = dg.DeepGraph(v)

Plot the Data

Let’s take a look at the data by creating a video of the time-evolution of precipitation measurements. Using the
plot_map_generator method, this is straight forward.

configure map projection
kwds_basemap = {'llcrnrlon': v.lon.min() - 1,

'urcrnrlon': v.lon.max() + 1,
'llcrnrlat': v.lat.min() - 1,
'urcrnrlat': v.lat.max() + 1,
'resolution': 'i'}

configure scatter plots
kwds_scatter = {'s': 1.5,

'c': g.v.r.values / 100.,
'edgecolors': 'none',
'cmap': 'viridis_r'}

create generator of scatter plots on map
objs = g.plot_map_generator('lon', 'lat', 'dtime',

kwds_basemap=kwds_basemap,
kwds_scatter=kwds_scatter)

plot and store frames
for i, obj in enumerate(objs):

configure plots
cb = obj['fig'].colorbar(obj['pc'], fraction=0.025, pad=0.01)
cb.set_label('[mm/h]')
obj['m'].fillcontinents(color='0.2', zorder=0, alpha=.4)
obj['ax'].set_title('{}'.format(obj['group']))

store and close
obj['fig'].savefig('tmp/pcp_{:03d}.png'.format(i),

dpi=300, bbox_inches='tight')
plt.close(obj['fig'])

create video with ffmpeg
cmd = "ffmpeg -y -r 5 -i tmp/pcp_%03d.png -c:v libx264 -r 20 -vf scale=2052:1004 {}.
→˓mp4"
os.system(cmd.format('precipitation_files/pcp'))

embed video
HTML("""
<video width="700" height="350" controls>

<source src="precipitation_files/pcp.mp4" type="video/mp4">

(continues on next page)

1.3. Tutorials 21

deepgraph Documentation, Release 0.2.3

(continued from previous page)

</video>
""")

[download video]

Detecting SpatioTemporal Clusters of Extreme Precipitation

In this tutorial, we’re interested in local formations of spatiotemporal clusters of extreme precipitation events. For that
matter, we now use DeepGraph to identify such clusters and track their temporal evolution.

Create Edges

We now use DeepGraph to create edges between the nodes given by g.v.

The edges of g will be utilized to detect spatiotemporal clusters in the data, or in more technical terms: to partition the
set of all nodes into subsets of connected grid points. One can imagine the nodes to be elements of a 3 dimensional
grid box (x,y,time), where we allow every node to have 26 possible neighbours (8 neighbours in the time slice of the
measurement, 𝑡𝑖, and 9 neighbours in each the time slice 𝑡𝑖1 and 𝑡𝑖 + 1).

For that matter, we pass the following connectors

def grid_2d_dx(x_s, x_t):
dx = x_t - x_s
return dx

def grid_2d_dy(y_s, y_t):
dy = y_t - y_s
return dy

and selectors

def s_grid_2d_dx(dx, sources, targets):
dxa = np.abs(dx)
sources = sources[dxa <= 1]
targets = targets[dxa <= 1]
return sources, targets

def s_grid_2d_dy(dy, sources, targets):
dya = np.abs(dy)
sources = sources[dya <= 1]
targets = targets[dya <= 1]
return sources, targets

to the create_edges_ft method

g.create_edges_ft(ft_feature=('time', 1),
connectors=[grid_2d_dx, grid_2d_dy],
selectors=[s_grid_2d_dx, s_grid_2d_dy],
r_dtype_dic={'ft_r': np.bool,

'dx': np.int8,
'dy': np.int8},

logfile='create_e',
max_pairs=1e7)

(continues on next page)

22 Chapter 1. Contents

deepgraph Documentation, Release 0.2.3

(continued from previous page)

rename fast track relation
g.e.rename(columns={'ft_r': 'dt'}, inplace=True)

To see how many nodes and edges our graph’s comprised of, one may simply type

g

<DeepGraph object, with n=382311 node(s) and m=567225 edge(s) at 0x7f7a4c3de160>

The edges we just created look like this

print(g.e)

dx dy dt
s t
0 1362 0 1 False

1432 1 0 False
1433 1 1 False
1696 1 0 True
1699 1 1 True

...
382284 382291 0 1 False
382295 382296 0 1 False
382296 382299 0 1 False
382299 382309 0 1 False
382304 382306 0 1 False

[567225 rows x 3 columns]

Logfile Plot

To see how long it took to create the edges, one may use the plot_logfile method

g.plot_logfile('create_e')

1.3. Tutorials 23

deepgraph Documentation, Release 0.2.3

Find the Connected Components

Having linked all neighbouring nodes, the spatiotemporal clusters can be identified as the connected components of
the graph. For practical reasons, DeepGraph directly implements a method to find the connected components of a
graph, append_cp

all singular components (components comprised of one node only)
are consolidated under the label 0
g.append_cp(consolidate_singles=True)
we don't need the edges any more
del g.e

the node table now has a component membership column appended

print(g.v)

lat lon dtime r x y area vol g_id time cp
0 15.125 -118.125 2004-08-20 1084 28 101 743 24174 5652 0 865
1 44.875 -30.625 2004-08-20 392 378 220 545 6433 85341 0 5079
2 45.125 -30.625 2004-08-20 454 378 221 543 7416 85342 0 5079
3 45.375 -30.625 2004-08-20 909 378 222 540 14767 85343 0 5079
4 45.625 -30.625 2004-08-20 907 378 223 538 14669 85344 0 5079
...

(continues on next page)

24 Chapter 1. Contents

deepgraph Documentation, Release 0.2.3

(continued from previous page)

382306 26.875 -46.625 2004-09-27 503 314 148 686 10385 70380 304 609
382307 38.375 -37.125 2004-09-27 453 352 194 603 8222 79095 304 0
382308 8.125 -105.125 2004-09-27 509 80 73 762 11663 17007 304 174
382309 21.875 -42.875 2004-09-27 260 329 128 714 5595 73875 304 8
382310 6.625 -111.125 2004-09-27 192 56 67 764 4428 11790 304 15610

[382311 rows x 11 columns]

Let’s see how many spatiotemporal clusters g is comprised of (discarding singular components)

g.v.cp.max()

33169

and how many nodes there are in the components

print(g.v.cp.value_counts())

0 64678
1 16460
2 8519
3 6381
4 3403

...
29601 2
27554 2
25507 2
23460 2
20159 2
Name: cp, dtype: int64

Partition the Nodes Into a Component Supernode Table

In order to aggregate and compute some information about the precipitiation clusters, we now partition the nodes
by the type of feature cp, the component membership labels of the nodes just created. This can be done with the
partition_nodes method

feature functions, will be applied to each component of g
feature_funcs = {'dtime': [np.min, np.max],

'time': [np.min, np.max],
'vol': [np.sum],
'lat': [np.mean],
'lon': [np.mean]}

partition the node table
cpv, gv = g.partition_nodes('cp', feature_funcs, return_gv=True)

append geographical id sets
cpv['g_ids'] = gv['g_id'].apply(set)

append cardinality of g_id sets
cpv['n_unique_g_ids'] = cpv['g_ids'].apply(len)

append time spans

(continues on next page)

1.3. Tutorials 25

deepgraph Documentation, Release 0.2.3

(continued from previous page)

cpv['dt'] = cpv['dtime_amax'] - cpv['dtime_amin']

append spatial coverage
def area(group):

return group.drop_duplicates('g_id').area.sum()
cpv['area'] = gv.apply(area)

The clusters look like this

print(cpv)

n_nodes dtime_amin dtime_amax time_amin time_amax lat_
→˓mean vol_sum lon_mean g_ids n_
→˓unique_g_ids dt area
cp
0 64678 2004-08-20 00:00:00 2004-09-27 00:00:00 0 304 17.
→˓609375 627097323 -63.40625 {0, 1, 2, 6, 7, 10, 12, 13, 14, 22, 23, 24, 25...
→˓ 49808 38 days 00:00:00 34781178
1 16460 2004-09-01 06:00:00 2004-09-17 18:00:00 98 230 17.
→˓281250 351187150 -65.12500 {65536, 65537, 65538, 65539, 65540, 65541, 655...
→˓ 6629 16 days 12:00:00 4803624
2 8519 2004-09-17 03:00:00 2004-09-24 15:00:00 225 285 26.
→˓906250 133698579 -44.62500 {73728, 73729, 73730, 73731, 73732, 73733, 737...
→˓ 3730 7 days 12:00:00 2507350
3 6381 2004-08-26 09:00:00 2004-09-06 03:00:00 51 137 21.
→˓062500 113782748 -64.12500 {65555, 65556, 65557, 65558, 65559, 65560, 655...
→˓ 2442 10 days 18:00:00 1749673
4 3403 2004-08-21 21:00:00 2004-08-24 12:00:00 15 36 10.
→˓578125 66675326 -111.93750 {8141, 14654, 11805, 16363, 8142, 11806, 20490...
→˓ 1294 2 days 15:00:00 978604
...
→˓.
→˓
33165 2 2004-08-23 18:00:00 2004-08-23 18:00:00 30 30 15.
→˓500000 20212 -103.87500 {18115, 18116}
→˓ 2 0 days 00:00:00 1483
33166 2 2004-09-05 18:00:00 2004-09-05 18:00:00 134 134 27.
→˓250000 9366 -121.87500 {2688, 2687}
→˓ 2 0 days 00:00:00 1368
33167 2 2004-08-30 15:00:00 2004-08-30 15:00:00 85 85 9.
→˓250000 43096 0.62500 {112116, 112117}
→˓ 2 0 days 00:00:00 1519
33168 2 2004-09-09 03:00:00 2004-09-09 03:00:00 161 161 6.
→˓750000 24156 -13.62500 {100613, 100614}
→˓ 2 0 days 00:00:00 1528
33169 2 2004-09-11 03:00:00 2004-09-11 03:00:00 177 177 15.
→˓500000 46798 -16.12500 {98523, 98524}
→˓ 2 0 days 00:00:00 1483

[33170 rows x 12 columns]

Plot the Largest Component

Let’s see how the largest cluster of extreme precipitation evolves over time, again using the plot_map_generator
method

26 Chapter 1. Contents

deepgraph Documentation, Release 0.2.3

temporary DeepGraph instance containing
only the largest component
gt = dg.DeepGraph(g.v)
gt.filter_by_values_v('cp', 1)

configure map projection
from mpl_toolkits.basemap import Basemap
m1 = Basemap(projection='ortho',

lon_0=cpv.loc[1].lon_mean + 12,
lat_0=cpv.loc[1].lat_mean + 8,
resolution=None)

width = (m1.urcrnrx - m1.llcrnrx) * .65
height = (m1.urcrnry - m1.llcrnry) * .45

kwds_basemap = {'projection': 'ortho',
'lon_0': cpv.loc[1].lon_mean + 12,
'lat_0': cpv.loc[1].lat_mean + 8,
'llcrnrx': -0.5 * width,
'llcrnry': -0.5 * height,
'urcrnrx': 0.5 * width,
'urcrnry': 0.5 * height,
'resolution': 'i'}

configure scatter plots
kwds_scatter = {'s': 2,

'c': np.log(gt.v.r.values / 100.),
'edgecolors': 'none',
'cmap': 'viridis_r'}

create generator of scatter plots on map
objs = gt.plot_map_generator('lon', 'lat', 'dtime',

kwds_basemap=kwds_basemap,
kwds_scatter=kwds_scatter)

plot and store frames
for i, obj in enumerate(objs):

configure plots
obj['m'].fillcontinents(color='0.2', zorder=0, alpha=.4)
obj['m'].drawparallels(range(-50, 50, 20), linewidth=.2)
obj['m'].drawmeridians(range(0, 360, 20), linewidth=.2)
obj['ax'].set_title('{}'.format(obj['group']))

store and close
obj['fig'].savefig('tmp/cp1_ortho_{:03d}.png'.format(i),

dpi=300, bbox_inches='tight')
plt.close(obj['fig'])

create video with ffmpeg
cmd = "ffmpeg -y -r 5 -i tmp/cp1_ortho_%03d.png -c:v libx264 -r 20 -vf
→˓scale=1919:1406 {}.mp4"
os.system(cmd.format('precipitation_files/cp1_ortho'))

embed video
HTML("""
<video width="700" height="500" controls>

<source src="precipitation_files/cp1_ortho.mp4" type="video/mp4">
(continues on next page)

1.3. Tutorials 27

deepgraph Documentation, Release 0.2.3

(continued from previous page)

</video>
""")

[download video]

Detecting Families of Spatially Related Clusters

Create SuperEdges between the Components

We now create superedges between the spatiotemporal clusters in order to find families of clusters that have a strong
regional overlap. Passing the following connectors and selector

compute intersection of geographical locations
def cp_node_intersection(g_ids_s, g_ids_t):

intsec = np.zeros(len(g_ids_s), dtype=object)
intsec_card = np.zeros(len(g_ids_s), dtype=np.int)
for i in range(len(g_ids_s)):

intsec[i] = g_ids_s[i].intersection(g_ids_t[i])
intsec_card[i] = len(intsec[i])

return intsec_card

compute a spatial overlap measure between clusters
def cp_intersection_strength(n_unique_g_ids_s, n_unique_g_ids_t, intsec_card):

min_card = np.array(np.vstack((n_unique_g_ids_s, n_unique_g_ids_t)).min(axis=0),
dtype=np.float64)

intsec_strength = intsec_card / min_card
return intsec_strength

compute temporal distance between clusters
def time_dist(dtime_amin_s, dtime_amin_t):

dt = dtime_amin_t - dtime_amin_s
return dt

to the create_edges method will provide the information necessary for this task

discard singular components
cpv.drop(0, inplace=True)

we only consider the largest 5000 clusters
cpv = cpv.iloc[:5000]

initiate DeepGraph
cpg = dg.DeepGraph(cpv)

create edges
cpg.create_edges(connectors=[cp_node_intersection,

cp_intersection_strength],
no_transfer_rs=['intsec_card'],
logfile='create_cpe',
step_size=1e7)

Since no selection of edges has taken place, the number of edges should be cpg.n*(cpg.n-1)/2

cpg

28 Chapter 1. Contents

deepgraph Documentation, Release 0.2.3

<DeepGraph object, with n=5000 node(s) and m=12497500 edge(s) at 0x7f7a00aec128>

print(cpg.e)

intsec_strength
s t
1 2 0.018499

3 0.002457
4 0.000000
5 0.000000
6 0.000000

... ...
4997 4999 0.000000

5000 0.000000
4998 4999 0.000000

5000 0.000000
4999 5000 0.000000

[12497500 rows x 1 columns]

print(cpg.e.intsec_strength.value_counts())

0.000000 12481941
1.000000 787
0.111111 488
0.333333 481
0.500000 462

...
0.012346 1
0.158537 1
0.178082 1
0.658537 1
0.018809 1
Name: intsec_strength, dtype: int64

Hierarchically Agglomerate Clusters into Families

Based on the above measure of spatial overlap between clusters, we now perform an agglomerative, hierarchical
clustering of the spatio-temporal clusters into regionally coherent families.

from scipy.cluster.hierarchy import linkage, fcluster

create condensed distance matrix
dv = 1 - cpg.e.intsec_strength.values
del cpg.e

create linkage matrix
lm = linkage(dv, method='average', metric='euclidean')
del dv

form flat clusters and append their labels to cpv
cpv['F'] = fcluster(lm, 1000, criterion='maxclust')
del lm

(continues on next page)

1.3. Tutorials 29

deepgraph Documentation, Release 0.2.3

(continued from previous page)

relabel families by size
f = cpv['F'].value_counts().index.values
fdic = {j: i for i, j in enumerate(f)}
cpv['F'] = cpv['F'].apply(lambda x: fdic[x])

Let’s see how many clusters there are in the families

print(cpv['F'].value_counts())

0 79
1 76
2 74
3 56
4 52

..
502 1
498 1
494 1
490 1
997 1
Name: F, dtype: int64

Create a “Raster Plot” of Families

Let’s plot the clusters of the largest 10 families in a raster-like boxplot, by means of the
plot_rects_label_numeric method

cpgt = dg.DeepGraph(cpg.v[cpg.v.F <= 10])
obj = cpgt.plot_rects_label_numeric('F', 'time_amin', 'time_amax',

colors=np.log(cpgt.v.vol_sum.values))
obj['ax'].set_xlabel('time', fontsize=20)
obj['ax'].set_ylabel('family', fontsize=20)
obj['ax'].grid()

30 Chapter 1. Contents

deepgraph Documentation, Release 0.2.3

Create and Plot Informative (Intersection) Partitions

In this last section, we create some useful (intersection) partitions of the deep graph, which we then use to create some
plots.

Geographical Locations

how many components have hit a certain
geographical location (discarding singular cps)
def count(cp):

return len(set(cp[cp != 0]))

feature functions, will be applied to each g_id
feature_funcs = {'cp': [count],

'vol': [np.sum],
'lat': np.min,
'lon': np.min}

gv = g.partition_nodes('g_id', feature_funcs)
gv.rename(columns={'lat_amin': 'lat',

'lon_amin': 'lon'}, inplace=True)

1.3. Tutorials 31

deepgraph Documentation, Release 0.2.3

print(gv)

n_nodes cp_count lat vol_sum lon
g_id
0 2 1 -10.125 10142 -125.125
1 2 1 -9.875 8716 -125.125
2 2 0 -9.625 4372 -125.125
3 2 2 -9.375 5310 -125.125
4 2 2 -9.125 6409 -125.125
...
115618 2 1 48.875 14319 5.125
115619 1 1 49.125 10129 5.125
115620 2 1 49.375 12826 5.125
115621 2 2 49.625 9117 5.125
115622 2 1 49.875 12101 5.125

[115623 rows x 5 columns]

Plot GeoLocational Information

cols = {'n_nodes': gv.n_nodes,
'vol sum': gv.vol_sum,
'cp count': gv.cp_count}

for name, col in cols.items():

for easy filtering, we create a new DeepGraph instance for
each component
gt = dg.DeepGraph(gv)

configure map projection
kwds_basemap = {'llcrnrlon': v.lon.min() - 1,

'urcrnrlon': v.lon.max() + 1,
'llcrnrlat': v.lat.min() - 1,
'urcrnrlat': v.lat.max() + 1}

configure scatter plots
kwds_scatter = {'s': 1,

'c': col.values,
'cmap': 'viridis_r',
'alpha': .5,
'edgecolors': 'none'}

create scatter plot on map
obj = gt.plot_map(lon='lon', lat='lat',

kwds_basemap=kwds_basemap,
kwds_scatter=kwds_scatter)

configure plots
obj['m'].drawcoastlines(linewidth=.8)
obj['m'].drawparallels(range(-50, 50, 20), linewidth=.2)
obj['m'].drawmeridians(range(0, 360, 20), linewidth=.2)
obj['ax'].set_title(name)

colorbar

(continues on next page)

32 Chapter 1. Contents

deepgraph Documentation, Release 0.2.3

(continued from previous page)

cb = obj['fig'].colorbar(obj['pc'], fraction=.022, pad=.02)
cb.set_label('{}'.format(name), fontsize=15)

1.3. Tutorials 33

deepgraph Documentation, Release 0.2.3

Geographical Locations and Families

In order to create the intersection partition of geographical locations and families, we first need to append a family
membership column to v

create F col
v['F'] = np.ones(len(v), dtype=int) * -1
gcpv = cpv.groupby('F')
it = gcpv.apply(lambda x: x.index.values)

for F in range(len(it)):
cp_index = v.cp.isin(it.iloc[F])
v.loc[cp_index, 'F'] = F

Then we create the intersection partition

feature funcs
def n_cp_nodes(cp):

return len(cp.unique())

feature_funcs = {'vol': [np.sum],
'lat': np.min,
'lon': np.min,
'cp': n_cp_nodes}

create family-g_id intersection graph
fgv = g.partition_nodes(['F', 'g_id'], feature_funcs=feature_funcs)
fgv.rename(columns={'lat_amin': 'lat',

'lon_amin': 'lon',
'cp_n_cp_nodes': 'n_cp_nodes'}, inplace=True)

which looks like this

print(fgv)

34 Chapter 1. Contents

deepgraph Documentation, Release 0.2.3

n_nodes n_cp_nodes lat vol_sum lon
F g_id
-1 0 2 2 -10.125 10142 -125.125

1 2 2 -9.875 8716 -125.125
2 2 1 -9.625 4372 -125.125
3 2 2 -9.375 5310 -125.125
4 2 2 -9.125 6409 -125.125

...
998 26685 1 1 -8.875 593 -93.625

26686 1 1 -8.625 411 -93.625
26887 1 1 -9.375 364 -93.375
26888 1 1 -9.125 478 -93.375
26889 1 1 -8.875 456 -93.375

[186903 rows x 5 columns]

Plot Family Information

families = [0,1,2,3]

for F in families:

for easy filtering, we create a new DeepGraph instance for
each component
gt = dg.DeepGraph(fgv.loc[F])

configure map projection
kwds_basemap = {'llcrnrlon': v.lon.min() - 1,

'urcrnrlon': v.lon.max() + 1,
'llcrnrlat': v.lat.min() - 1,
'urcrnrlat': v.lat.max() + 1}

configure scatter plots
kwds_scatter = {'s': 1,

'c': gt.v.n_cp_nodes.values,
'cmap': 'viridis_r',
'edgecolors': 'none'}

create scatter plot on map
obj = gt.plot_map(

lat='lat', lon='lon',
kwds_basemap=kwds_basemap, kwds_scatter=kwds_scatter)

configure plots
obj['m'].drawcoastlines(linewidth=.8)
obj['m'].drawparallels(range(-50, 50, 20), linewidth=.2)
obj['m'].drawmeridians(range(0, 360, 20), linewidth=.2)
cb = obj['fig'].colorbar(obj['pc'], fraction=.022, pad=.02)
cb.set_label('n_cps', fontsize=15)
obj['ax'].set_title('Family {}'.format(F))

1.3. Tutorials 35

deepgraph Documentation, Release 0.2.3

36 Chapter 1. Contents

deepgraph Documentation, Release 0.2.3

Geographical Locations and Components

feature functions, will be applied on each [g_id, cp] group of g
feature_funcs = {'vol': [np.sum],

'lat': np.min,
'lon': np.min}

create gcpv
gcpv = g.partition_nodes(['cp', 'g_id'], feature_funcs)

gcpv.rename(columns={'lat_amin': 'lat',
'lon_amin': 'lon'}, inplace=True)

print(gcpv)

1.3. Tutorials 37

deepgraph Documentation, Release 0.2.3

n_nodes lat vol_sum lon
cp g_id
0 0 1 -10.125 5071 -125.125

1 1 -9.875 4415 -125.125
2 2 -9.625 4372 -125.125
6 3 -8.375 1026 -125.125
7 1 -8.125 594 -125.125

...
33167 112117 1 9.375 24618 0.625
33168 100613 1 6.625 11450 -13.625

100614 1 6.875 12706 -13.625
33169 98523 1 15.375 31057 -16.125

98524 1 15.625 15741 -16.125

[287301 rows x 4 columns]

Plot Component Information

select the components to plot
comps = [1, 2, 3, 4]

fig, axs = plt.subplots(2, 2, figsize=[10,8])
axs = axs.flatten()

for comp, ax in zip(comps, axs):

for easy filtering, we create a new DeepGraph instance for
each component
gt = dg.DeepGraph(gcpv[gcpv.index.get_level_values('cp') == comp])

configure map projection
kwds_basemap = {'projection': 'ortho',

'lon_0': cpv.loc[comp].lon_mean,
'lat_0': cpv.loc[comp].lat_mean,
'resolution': 'c'}

configure scatter plots
kwds_scatter = {'s': .5,

'c': gt.v.vol_sum.values,
'cmap': 'viridis_r',
'edgecolors': 'none'}

create scatter plot on map
obj = gt.plot_map(lon='lon', lat='lat',

kwds_basemap=kwds_basemap,
kwds_scatter=kwds_scatter,
ax=ax)

configure plots
obj['m'].fillcontinents(color='0.2', zorder=0, alpha=.2)
obj['m'].drawparallels(range(-50, 50, 20), linewidth=.2)
obj['m'].drawmeridians(range(0, 360, 20), linewidth=.2)
obj['ax'].set_title('cp {}'.format(comp))

38 Chapter 1. Contents

deepgraph Documentation, Release 0.2.3

1.3.4 From Multilayer Networks to Deep Graphs

[ipython notebook] [python script]

In this tutorial we exemplify the representation of multilayer networks (MLNs) by deep graphs and demonstrate some
of the advantages of deepgraph’s network representation.

We start by converting the Noordin Top Terrorist MLN into a graph g - comprised of two DataFrames, a node table
g.v and an edge table g.e - that corresponds to the supra-graph representation of the multilayer network.

We then partition the graph g by the information attributed to its layers, resulting in different supergraphs on the
partition lattice of g that correpsond to different representations of a MLN (including its tensor representation).

In the next part, we demonstrate how additional information that might be at hand or computed during the analysis can
be used to induce further supergraphs, or metaphorically speaking, how additional information corresponds to “hidden
layers” of a MLN.

Finally, we briefly show how to use the nodes’ properties to partition the edges of a MLN.

1.3. Tutorials 39

https://sites.google.com/site/sfeverton18/research/appendix-1

deepgraph Documentation, Release 0.2.3

** References **

For a short summary of the multilayer network representation, see Appendix C of the Deep Graphs paper.

For a more in-depth introduction to MLNs, I recommend the following papers:

• Multilayer Networks (review paper of MLNs)

• The Structure and Dynamics of Multilayer Networks (review paper of MLNs)

• Mathematical Formulation of Multilayer Networks (tensor formalism for MLNs)

For a discussion of how Deep Graphs relates to the multilayer network representation, see Sec. IV B and Appendix D
of the Deep Graphs paper.

The Noordin Top Terrorist Data

40 Chapter 1. Contents

https://arxiv.org/pdf/1604.00971v1.pdf
https://arxiv.org/abs/1309.7233
https://arxiv.org/abs/1407.0742
http://arxiv.org/abs/1307.4977
https://arxiv.org/pdf/1604.00971v1.pdf

deepgraph Documentation, Release 0.2.3

[high-res version] [python plot script]

The data we use in this tutorial is the Noordin Top Terrorist Network, which has previously been represented as a
multilayer network (e.g., http://arxiv.org/abs/1308.3182)

It includes relational data on 79 Indonesian terrorists belonging to the so-called Noordin Top Terrorist Network.

For information about the individual’s attributes and their relations, see http://www.thearda.com/archive/files/
codebooks/origCB/Noordin%20Subset%20Codebook.pdf and http://arxiv.org/pdf/1308.3182v3.pdf.

Preprocessing

We download the data from here, and process it into two pandas DataFrames, a node table and an edge table. The
preprocessing is quite lengthy, so you might want to proceed directly to the next section.

First of all, we need to import some packages

data i/o
import os
import subprocess
import zipfile

for plots
import matplotlib.pyplot as plt

the usual
import numpy as np
import pandas as pd

import deepgraph as dg

notebook display
%matplotlib inline
pd.options.display.max_rows = 10
pd.set_option('expand_frame_repr', False)

Preprocessing the Nodes

zip file containing node attributes
os.makedirs("tmp", exist_ok=True)
get_nodes_zip = ("wget -O tmp/terrorist_nodes.zip "

"https://sites.google.com/site/sfeverton18/"
"research/appendix-1/Noordin%20Subset%20%28ORA%29.zip?"
"attredirects=0&d=1")

subprocess.call(get_nodes_zip.split())

unzip
zf = zipfile.ZipFile('tmp/terrorist_nodes.zip')
zf.extract('Attributes.csv', path='tmp/')
zf.close()

create node table
v = pd.read_csv('tmp/Attributes.csv')
v.rename(columns={'Unnamed: 0': 'Name'}, inplace=True)

create a copy of all nodes for each layer (i.e., create "node-layers")
(continues on next page)

1.3. Tutorials 41

https://sites.google.com/site/sfeverton18/research/appendix-1
http://arxiv.org/abs/1308.3182
http://www.thearda.com/archive/files/codebooks/origCB/Noordin%20Subset%20Codebook.pdf
http://www.thearda.com/archive/files/codebooks/origCB/Noordin%20Subset%20Codebook.pdf
http://arxiv.org/pdf/1308.3182v3.pdf
https://sites.google.com/site/sfeverton18/research/appendix-1
http://pandas.pydata.org/pandas-docs/stable/generated/pandas.DataFrame.html

deepgraph Documentation, Release 0.2.3

(continued from previous page)

there are 10 layers and 79 nodes on each layer
v = pd.concat(10*[v])

add "aspect" as column to v
layer_names = ['Business', 'Communication', 'O Logistics', 'O Meetings',

'O Operations', 'O Training', 'T Classmates', 'T Friendship',
'T Kinship', 'T Soulmates']

layers = [[name]*79 for name in layer_names]
layers = [item for sublist in layers for item in sublist]
v['layer'] = layers

set unique node index
v.reset_index(inplace=True)
v.rename(columns={'index': 'V_N'}, inplace=True)

swap columns
cols = list(v)
cols[1], cols[10] = cols[10], cols[1]
v = v[cols]

get rid of the attribute columns for demonstrational purposes,
will be inserted again later
v, vinfo = v.iloc[:, :2], v.iloc[:, 2:]

Preprocessing the Edges

paj file containing edges for different layers
get_paj = ("wget -O tmp/terrorists.paj "

"https://sites.google.com/site/sfeverton18/"
"research/appendix-1/Noordin%20Subset%20%28Pajek%29.paj?"
"attredirects=0&d=1")

subprocess.call(get_paj.split())

get data blocks from paj file
with open('tmp/terrorists.paj') as txtfile:

comments = []
data = []
part = []
for line in txtfile:

if line.startswith('*'):
comment lines
comment = line
comments.append(comment)
if part:

data.append(part)
part = []

else:
vertices
if comment.startswith('*Vertices') and len(line.split()) > 1:

sublist = line.split('"')
sublist = sublist[:2] + sublist[-1].split()
part.append(sublist)

edges or partitions
elif not line.isspace():

(continues on next page)

42 Chapter 1. Contents

deepgraph Documentation, Release 0.2.3

(continued from previous page)

part.append(line.split())
append last block
data.append(part)

extract edge tables from data blocks
ecomments = []
eparts = []
for i, c in enumerate(comments):

if c.startswith('*Network'):
del data[0]

elif c.startswith('*Partition'):
del data[0]

elif c.startswith('*Vector'):
del data[0]

elif c.startswith('*Arcs') or c.startswith('*Edges'):
ecomments.append(c)
eparts.append(data.pop(0))

layer data parts (indices found manually via comments)
inds = [11, 10, 5, 6, 7, 8, 0, 1, 2, 3]
eparts = [eparts[ind] for ind in inds]

convert to DataFrames
layer_frames = []
for name, epart in zip(layer_names, eparts):

frame = pd.DataFrame(epart, dtype=np.int16)
get rid of self-loops, bidirectional edges
frame = frame[frame[0] < frame[1]]
rename columns
frame.rename(columns={0: 's', 1: 't', 2: name}, inplace=True)
frame['s'] -= 1
frame['t'] -= 1
layer_frames.append(frame)

set indices
for i, e in enumerate(layer_frames):

e['s'] += i*79
e['t'] += i*79
e.set_index(['s', 't'], inplace=True)

concat the layers
e = pd.concat(layer_frames)

edge table as described in the paper
e_paper = e.copy()

alternative representation of e
e['type'] = 0
e['weight'] = 0
for layer in layer_names:

where = e[layer].notnull()
e.loc[where, 'type'] = layer
e.loc[where, 'weight'] = e.loc[where, layer]

e = e[['type', 'weight']]

1.3. Tutorials 43

deepgraph Documentation, Release 0.2.3

DeepGraph’s Supra-Graph Representation of a MLN, 𝐺 = (𝑉,𝐸)

Above, we have processed the downloaded data into a node table v and an edge table e, that correspond to the supra-
graph representation of a multilayer network. This is the preferred representation of a MLN by a deep graph, since all
other representations are entailed in the supra-graph’s partition lattice, as we will demonstrate below.

g = dg.DeepGraph(v, e)
print(g)

<DeepGraph object, with n=790 node(s) and m=1014 edge(s) at 0x7fb8e13499e8>

Let’s have a look at the node table first

print(g.v)

V_N layer
0 0 Business
1 1 Business
2 2 Business
3 3 Business
4 4 Business
..
785 74 T Soulmates
786 75 T Soulmates
787 76 T Soulmates
788 77 T Soulmates
789 78 T Soulmates

[790 rows x 2 columns]

As you can see, there are 790 nodes in total. Each of the 10 layers,

print(g.v.layer.unique())

['Business' 'Communication' 'O Logistics' 'O Meetings' 'O Operations'
'O Training' 'T Classmates' 'T Friendship' 'T Kinship' 'T Soulmates']

is comprised of 79 nodes. Every node has a feature of type V_N, indicating the individual the node belongs to, and
a feature of type layer, corresponding to the layer the node belongs to. Each of the 790 nodes corresponds to a
node-layer of the MLN representation of this data.

The edge table,

print(g.e)

type weight
s t
9 67 Business 2.0

69 Business 1.0
77 Business 1.0

11 61 Business 1.0
20 59 Business 1.0
...
733 769 T Soulmates 1.0
755 769 T Soulmates 1.0

787 T Soulmates 1.0

(continues on next page)

44 Chapter 1. Contents

deepgraph Documentation, Release 0.2.3

(continued from previous page)

771 788 T Soulmates 1.0
783 788 T Soulmates 1.0

[1014 rows x 2 columns]

is comprised of 1014 edges between the nodes in v. Each edge has two relations. The first relation (of type type)
is determined by the tuple of features (𝑙𝑎𝑦𝑒𝑟𝑖, 𝑙𝑎𝑦𝑒𝑟𝑗) of the adjacent nodes 𝑉𝑖 and 𝑉𝑗 . The second relation (of type
weight) indicates the “weight” of the connection.

This representation of the edges of a MLN deviates from the one you can find in the paper, which is described in the
last section.

There are 10 types of relations in the above edge table

g.e['type'].unique()

array(['Business', 'Communication', 'O Logistics', 'O Meetings',
'O Operations', 'O Training', 'T Classmates', 'T Friendship',
'T Kinship', 'T Soulmates'], dtype=object)

which - in the case of this data set - correspond to the layers of the nodes. This is due to the fact that there are
no inter-layer connections in the Noordin Top Terrorist Network (such as, e.g., an edge from layer Business to
layer Communication would be). The edges here are all (undirected) intra-layer edges (e.g., Business → Business,
Operations → Operations).

To see how the edges are distributed among the different types, you can simply type

g.e['type'].value_counts()

O Operations 267
Communication 200
T Classmates 175
O Training 147
T Friendship 91
O Meetings 63
O Logistics 29
T Kinship 16
Business 15
T Soulmates 11
Name: type, dtype: int64

Let’s have a look at how many “actors” (nodes with at least one connection) there are within each layer

append degree
gtg = g.return_gt_graph()
g.v['deg'] = gtg.degree_property_map('total').a

how many "actors" are there per layer?
g.v[g.v.deg != 0].groupby('layer').size()

layer
Business 13
Communication 74
O Logistics 16
O Meetings 26
O Operations 39

(continues on next page)

1.3. Tutorials 45

https://arxiv.org/pdf/1604.00971v1.pdf

deepgraph Documentation, Release 0.2.3

(continued from previous page)

O Training 38
T Classmates 39
T Friendship 61
T Kinship 24
T Soulmates 9
dtype: int64

For the purpose of this tutorial, the fact that the Noordin Top Terrorist Network is a MLN with only one aspect, and
without inter-layer edges, is of little importance. The generalization of what we’re showing in the following to more
general MLNs is straight-forward (and explained in detail in Appendix D of the paper).

Let’s illustrate the supra-graph representation of this MLN by a plot

create graph_tool graph for layout
import graph_tool.draw as gtd
gtg = g.return_gt_graph()
gtg.set_directed(False)

get sfdp layout postitions
pos = gtd.sfdp_layout(gtg, gamma=.5)
pos = pos.get_2d_array([0, 1])
g.v['x'] = pos[0]
g.v['y'] = pos[1]

configure nodes
kwds_scatter = {'s': 1,

'c': 'k'}

configure edges
kwds_quiver = {'headwidth': 1,

'alpha': .3,
'cmap': 'prism'}

color by type
C = g.e.groupby('type').grouper.group_info[0]

plot
fig, ax = plt.subplots(1, 2, figsize=(15, 7))
g.plot_2d('x', 'y', edges=True, C=C,

kwds_scatter=kwds_scatter,
kwds_quiver=kwds_quiver, ax=ax[0])

turn axis off, set x/y-lim
ax[0].axis('off')
ax[0].set_xlim((g.v.x.min() - 1, g.v.x.max() + 1))
ax[0].set_ylim((g.v.y.min() - 1, g.v.y.max() + 1))

plot adjacency matrix
adj = g.return_cs_graph().todense()
adj = adj + adj.T
inds = np.where(adj != 0)
ax[1].scatter(inds[0], inds[1], c='k', marker='.')
ax[1].grid()
ax[1].set_xlim(-1, 791)
ax[1].set_ylim(-1,791)

46 Chapter 1. Contents

https://arxiv.org/pdf/1604.00971v1.pdf

deepgraph Documentation, Release 0.2.3

The supra-graph representation of a MLN is by itself a powerful representation and exploitable in various ways (see,
e.g., section 2.3 of this paper). However, in the following, we will demonstrate how to use the additional information
attributed to the layers of the MLN, in order to “structure” and partition the MLN into different representations.

Redistributing Information on the Partition Lattice of the MLN

Based on the types of features V_N and layer, we can now redistribute the information contained in the supra-graph
g. This redistribution allows for several representations of the graph, which we will demonstrate in the following.

The SuperGraph 𝐺𝐿 = (𝑉 𝐿, 𝐸𝐿)

Partitioning by the type of feature layer leads to the supergraph 𝐺𝐿 = (𝑉 𝐿, 𝐸𝐿), where every supernode 𝑉 𝐿
𝑖𝐿 ∈ 𝑉 𝐿

corresponds to a distinct layer, encompassing all its respective nodes. Superedges 𝐸𝐿
𝑖𝐿,𝑗𝐿 ∈ 𝐸𝐿 with either 𝑖𝐿 = 𝑗𝐿

or 𝑖𝐿 ̸= 𝑗𝐿 correspond to collections of intra- and inter-layer edges of the MLN, respectively.

partition the graph
lv, le = g.partition_graph('layer',

relation_funcs={'weight': ['sum', 'mean', 'std']})
lg = dg.DeepGraph(lv, le)
print(lg)

<DeepGraph object, with n=10 node(s) and m=10 edge(s) at 0x7fb8e1349c50>

print(lg.v)

n_nodes
layer
Business 79
Communication 79
O Logistics 79
O Meetings 79
O Operations 79

(continues on next page)

1.3. Tutorials 47

https://arxiv.org/pdf/1309.7233v4.pdf

deepgraph Documentation, Release 0.2.3

(continued from previous page)

O Training 79
T Classmates 79
T Friendship 79
T Kinship 79
T Soulmates 79

print(lg.e)

n_edges weight_sum weight_mean weight_std
layer_s layer_t
Business Business 15 16.0 1.066667 0.258199
Communication Communication 200 200.0 1.000000 0.000000
O Logistics O Logistics 29 58.0 2.000000 0.000000
O Meetings O Meetings 63 170.0 2.698413 1.612801
O Operations O Operations 267 574.0 2.149813 0.699107
O Training O Training 147 334.0 2.272109 0.763534
T Classmates T Classmates 175 175.0 1.000000 0.000000
T Friendship T Friendship 91 91.0 1.000000 0.000000
T Kinship T Kinship 16 16.0 1.000000 0.000000
T Soulmates T Soulmates 11 11.0 1.000000 0.000000

Let’s plot the graph g grouped by its layers.

append layer_id to group nodes by layers
g.v['layer_id'] = g.v.groupby('layer').grouper.group_info[0].astype(np.int32)

create graph_tool graph object
gtg = g.return_gt_graph(features=['layer_id'])
gtg.set_directed(False)

get sfdp layout postitions
pos = gtd.sfdp_layout(gtg, groups=gtg.vp['layer_id'], mu=.15)
pos = pos.get_2d_array([0, 1])
g.v['x'] = pos[0]
g.v['y'] = pos[1]

configure nodes
kwds_scatter = {'s': 10,

'c': 'k'}

configure edges
kwds_quiver = {'headwidth': 1,

'alpha': .4,
'cmap': 'viridis'}

color by weight
C = g.e.weight.values

plot
fig, ax = plt.subplots(figsize=(12, 12))
obj = g.plot_2d('x', 'y', edges=True, C=C,

kwds_scatter=kwds_scatter,
kwds_quiver=kwds_quiver, ax=ax)

turn axis off, set x/y-lim and name layers
ax.axis('off')
margin = 10

(continues on next page)

48 Chapter 1. Contents

deepgraph Documentation, Release 0.2.3

(continued from previous page)

ax.set_xlim((g.v.x.min() - margin, g.v.x.max() + margin))
ax.set_ylim((g.v.y.min() - margin, g.v.y.max() + margin))
for layer in layer_names:

plt.text(g.v[g.v['layer'] == layer].x.mean() - margin * 3,
g.v[g.v['layer'] == layer].y.max() + margin,
layer, fontsize=15)

We can also plot the supergraph 𝐺𝐿 = (𝑉 𝐿, 𝐸𝐿)

create graph_tool graph of lg
gtg = lg.return_gt_graph(relations=True, node_indices=True, edge_indices=True)

create plot
gtd.graph_draw(gtg,

vertex_text=gtg.vp['i'], vertex_text_position=-2,
vertex_fill_color='w',
vertex_text_color='k',

(continues on next page)

1.3. Tutorials 49

deepgraph Documentation, Release 0.2.3

(continued from previous page)

edge_text=gtg.ep['n_edges'],
inline=True, fit_view=.8,
output_size=(400,400))

The SuperGraph 𝐺𝑁 = (𝑉 𝑁 , 𝐸𝑁)

Partitioning by the type of feature V_N leads to the supergraph 𝐺𝑁 = (𝑉 𝑁 , 𝐸𝑁), where each supernode 𝑉 𝑁
𝑖𝑁 ∈ 𝑉 𝑁

corresponds to a node of the MLN. Superedges 𝐸𝑁
𝑖𝑁 𝑗𝑁 ∈ 𝐸𝑁 with 𝑖𝑁 = 𝑗𝑁 correspond to the coupling edges of a

MLN.

partition by MLN's node indices
nv, ne, gv, ge = g.partition_graph('V_N', return_gve=True)

for each superedge, get types of edges and their weights
def type_weights(group):

index = group['type'].values
data = group['weight'].values

(continues on next page)

50 Chapter 1. Contents

deepgraph Documentation, Release 0.2.3

(continued from previous page)

return pd.Series(data=data, index=index)
ne_weights = ge.apply(type_weights).unstack()
ne = pd.concat((ne, ne_weights), axis=1)

create graph
ng = dg.DeepGraph(nv, ne)
ng

<DeepGraph object, with n=79 node(s) and m=623 edge(s) at 0x7fb8d1da8b70>

print(ng.v)

n_nodes
V_N
0 10
1 10
2 10
3 10
4 10
.. ...
74 10
75 10
76 10
77 10
78 10

[79 rows x 1 columns]

print(ng.e)

n_edges Business Communication O Logistics O Meetings O Operations
→˓O Training T Classmates T Friendship T Kinship T Soulmates
V_N_s V_N_t
0 15 3 NaN 1.0 2.0 NaN NaN
→˓ NaN NaN NaN 1.0 NaN
1 4 1 NaN NaN NaN NaN NaN
→˓ NaN 1.0 NaN NaN NaN

5 1 NaN NaN NaN NaN NaN
→˓ NaN 1.0 NaN NaN NaN

16 1 NaN NaN NaN NaN 2.0
→˓ NaN NaN NaN NaN NaN

21 1 NaN NaN NaN NaN NaN
→˓ NaN 1.0 NaN NaN NaN
...
→˓
72 73 4 NaN 1.0 NaN NaN 2.0
→˓ 2.0 NaN NaN 1.0 NaN

76 6 NaN 1.0 NaN 2.0 2.0
→˓ 2.0 1.0 1.0 NaN NaN

77 2 NaN NaN 2.0 NaN NaN
→˓ NaN NaN NaN NaN 1.0
73 76 2 NaN NaN NaN NaN 2.0
→˓ 2.0 NaN NaN NaN NaN
75 78 2 NaN NaN NaN NaN NaN
→˓ 2.0 NaN 1.0 NaN NaN

(continues on next page)

1.3. Tutorials 51

deepgraph Documentation, Release 0.2.3

(continued from previous page)

[623 rows x 11 columns]

Let’s plot the graph g grouped by V_N.

create graph_tool graph object
g.v['V_N'] = g.v['V_N'].astype(np.int32) # sfpd only takes int32
g_tmp = dg.DeepGraph(v)
gtg = g_tmp.return_gt_graph(features='V_N')
gtg.set_directed(False)

get sfdp layout postitions
pos = gtd.sfdp_layout(gtg, groups=gtg.vp['V_N'], mu=.3, gamma=.01)
pos = pos.get_2d_array([0, 1])
g.v['x'] = pos[0]
g.v['y'] = pos[1]

configure nodes
kwds_scatter = {'c': 'k'}

configure edges
kwds_quiver = {'headwidth': 1,

'alpha': .2,
'cmap': 'viridis_r'}

color by type
C = g.e.groupby('type').grouper.group_info[0]

plot
fig, ax = plt.subplots(figsize=(15,15))
g.plot_2d('x', 'y', edges=True,

kwds_scatter=kwds_scatter, C=C,
kwds_quiver=kwds_quiver, ax=ax)

turn axis off, set x/y-lim and name nodes
name_dic = {i: name for i, name in enumerate(vinfo.iloc[:79].Name)}
ax.axis('off')
ax.set_xlim((g.v.x.min() - 1, g.v.x.max() + 1))
ax.set_ylim((g.v.y.min() - 1, g.v.y.max() + 1))
for node in g.v['V_N'].unique():

plt.text(g.v[g.v['V_N'] == node].x.mean() - 1,
g.v[g.v['V_N'] == node].y.max() + 1,
name_dic[node], fontsize=12)

52 Chapter 1. Contents

deepgraph Documentation, Release 0.2.3

Let’s also plot the supergraph 𝐺𝑁 = (𝑉 𝑁 , 𝐸𝑁), where the color of the superedges corresponds to the number of
edges within the respective superedge.

get rid of isolated node for nicer layout
ng.v.drop(57, inplace=True, errors='ignore')

create graph_tool graph object
gtg = ng.return_gt_graph(features=True, relations='n_edges')
gtg.set_directed(False)

get sfdp layout postitions
pos = gtd.sfdp_layout(gtg)
pos = pos.get_2d_array([0, 1])
ng.v['x'] = pos[0]
ng.v['y'] = pos[1]

configure nodes
kwds_scatter = {'s': 100,

(continues on next page)

1.3. Tutorials 53

deepgraph Documentation, Release 0.2.3

(continued from previous page)

'c': 'k'}

configure edges
split edges with only one type of connection
C_split_0 = ng.e['n_edges'].values.copy()
C_split_0[C_split_0 == 1] = 0

edges with one type of connection
kwds_quiver_0 = {'alpha': .3,

'width': .001}

edges with more than one type
kwds_quiver = {'headwidth': 1,

'width': .003,
'alpha': .7,
'cmap': 'Blues',
'clim': (1, ng.e.n_edges.max())}

create plot
fig, ax = plt.subplots(figsize=(15,15))
ng.plot_2d('x', 'y', edges=True, C_split_0=C_split_0,

kwds_scatter=kwds_scatter, kwds_quiver_0=kwds_quiver_0,
kwds_quiver=kwds_quiver, ax=ax)

turn axis off, set x/y-lim and name nodes
ax.axis('off')
ax.set_xlim(ng.v.x.min() - 1, ng.v.x.max() + 1)
ax.set_ylim(ng.v.y.min() - 1, ng.v.y.max() + 1)
for i in ng.v.index:

plt.text(ng.v.at[i, 'x'], ng.v.at[i, 'y'] + .3, i, fontsize=12)

54 Chapter 1. Contents

deepgraph Documentation, Release 0.2.3

The Tensor-Like Representation 𝐺𝑁𝐿 = (𝑉 𝑁𝐿, 𝐸𝑁𝐿)

Considering only the information attributed to the layers of the MLN, and the fact that this MLN has just one aspect,
there is only one more supergraph we can create of g. It is given by creating the intersection partition (see section III E
of the Deep Graphs paper) of the types of features V_N and layer. The resulting supergraph 𝐺𝑁 ·𝐿 = (𝑉 𝑁 ·𝐿, 𝐸𝑁 ·𝐿)
corresponds one to one to the graph 𝐺 = (𝑉,𝐸), and therefore to the supra-graph representation of the MLN. The
only difference is the indexing, which is tensor-like for the supergraph 𝐺𝑁 ·𝐿.

partition the graph
relation_funcs = {'type': 'sum', 'weight': 'sum'} # just to transfer relations
nlv, nle = g.partition_graph(['V_N', 'layer'], relation_funcs=relation_funcs)
nlg = dg.DeepGraph(nlv, nle)
nlg

1.3. Tutorials 55

https://arxiv.org/pdf/1604.00971v1.pdf

deepgraph Documentation, Release 0.2.3

<DeepGraph object, with n=790 node(s) and m=1014 edge(s) at 0x7fb8d5325550>

print(nlg.v)

n_nodes
V_N layer
0 Business 1

Communication 1
O Logistics 1
O Meetings 1
O Operations 1

... ...
78 O Training 1

T Classmates 1
T Friendship 1
T Kinship 1
T Soulmates 1

[790 rows x 1 columns]

print(nlg.e)

n_edges weight type
V_N_s layer_s V_N_t layer_t
0 Communication 15 Communication 1 1.0 Communication

O Logistics 15 O Logistics 1 2.0 O Logistics
T Kinship 15 T Kinship 1 1.0 T Kinship

1 O Operations 16 O Operations 1 2.0 O Operations
22 O Operations 1 2.0 O Operations

...
72 T Soulmates 77 T Soulmates 1 1.0 T Soulmates
73 O Operations 76 O Operations 1 2.0 O Operations

O Training 76 O Training 1 2.0 O Training
75 O Training 78 O Training 1 2.0 O Training

T Friendship 78 T Friendship 1 1.0 T Friendship

[1014 rows x 3 columns]

This tensor-like index allows you to use the advanced indexing features of pandas.

print(nlg.e.loc[2, 'Communication', :, 'Communication'])

n_edges weight type
V_N_s layer_s V_N_t layer_t
2 Communication 5 Communication 1 1.0 Communication

12 Communication 1 1.0 Communication
30 Communication 1 1.0 Communication
58 Communication 1 1.0 Communication

In the future, we might implement a method to convert this tensor-representation of a MLN to some sparse-tensor data
structure (e.g., https://github.com/mnick/scikit-tensor). Another idea is to create an interface to a suitable multilayer
network package that implements the measures and models developed particularly for MLNs.

56 Chapter 1. Contents

http://pandas.pydata.org/pandas-docs/stable/advanced.html#advanced-indexing-with-hierarchical-index
https://github.com/mnick/scikit-tensor

deepgraph Documentation, Release 0.2.3

The “Hidden Layers” of a MLN

Partitioning a multilayer network solely based on the information attributed to its layers only gets us this far. If there
is more information available, or computed during the analysis [e.g., by statistical measures, network measures or
similarity/distance measures (see g.create_edges)], it can be used to induce further supergraphs and reach other
elements of the partition lattice of g.

This is what we’ll demonstrate here, based on the additional information available about the individual’s attributes:

print(vinfo)

Education Level Contact with People Military Training Nationality Current
→˓Status (ICG Article) Role Primary Group Affiliation Noordin's Network
→˓ Name
0 0 5 0 3
→˓ 1 7 1 0 Abdul
→˓Malik
1 2 3 0 3
→˓ 2 10 1 0 Abdul
→˓Rauf
2 0 10 0 3
→˓ 1 9 0 0 Abdul
→˓Rohim
3 3 5 3 3
→˓ 2 1 2 0 Abdullah
→˓Sunata
4 2 3 0 3
→˓ 0 1 3 0 Abdullah
→˓Sungkar
..
→˓
→˓ ...
785 2 12 5 3
→˓ 1 3 3 1 Umar
→˓Patek
786 2 1 7 3
→˓ 2 4 3 0 Umar
→˓Wayan
787 2 3 3 3
→˓ 2 7 3 1
→˓Urwah
788 2 11 3 3
→˓ 2 10 3 1 Usman
→˓bin Sef
789 2 1 7 4
→˓ 1 1 3 0
→˓Zulkarnaen

[790 rows x 9 columns]

As you can see, there are 9 different attributes associated with each individual, such as their military training, national-
ity, education level, etc. Let’s append this information to the node table, and plot the nodes grouped by their education
level.

append node information to g
v = pd.concat((v, vinfo), axis=1)
g = dg.DeepGraph(v, e)

1.3. Tutorials 57

deepgraph Documentation, Release 0.2.3

create graph_tool graph object
g.v['Education Level'] = g.v['Education Level'].astype(np.int32)
g_tmp = dg.DeepGraph(g.v)
gtg = g_tmp.return_gt_graph(features=['Education Level'])
gtg.set_directed(False)

get sfdp layout postitions
pos = gtd.sfdp_layout(gtg, groups=gtg.vp['Education Level'], mu=.3, gamma=.1)
pos = pos.get_2d_array([0, 1])
g.v['x'] = pos[0]
g.v['y'] = pos[1]

configure nodes
kwds_scatter = {'s': 10,

'c': 'k'}

configure edges
kwds_quiver = {'width': 0.002,

'headwidth': 1,
'alpha': .2,
'cmap': 'prism'}

color by type
C = g.e.groupby('type').grouper.group_info[0]

plot
fig, ax = plt.subplots(figsize=(13,12))
obj = g.plot_2d('x', 'y', edges=True,

kwds_scatter=kwds_scatter, C=C,
kwds_quiver=kwds_quiver, ax=ax)

turn axis off, set x/y-lim and name layers
ax.axis('off')
ax.set_xlim((g.v.x.min() - 1, g.v.x.max() + 1))
ax.set_ylim((g.v.y.min() - 1, g.v.y.max() + 1))
for el in g.v['Education Level'].unique():

plt.text(g.v[g.v['Education Level'] == el].x.mean() - 1,
g.v[g.v['Education Level'] == el].y.max() + 1,
'EL {}'.format(el), fontsize=20)

58 Chapter 1. Contents

deepgraph Documentation, Release 0.2.3

Let’s also append the information to the supergraph 𝐺𝑁 , and plot this supergraph grouped by education level.

append info to ng.v
ng.v = pd.concat((ng.v, vinfo[:79]), axis=1)

create graph_tool graph object
ng.v['Education Level'] = ng.v['Education Level'].astype(np.int32)
g_tmp = dg.DeepGraph(ng.v)
gtg = g_tmp.return_gt_graph(features=['Education Level'])
gtg.set_directed(False)

get sfdp layout postitions
pos = gtd.sfdp_layout(gtg, groups=gtg.vp['Education Level'], mu=.3, gamma=.01)
pos = pos.get_2d_array([0, 1])
ng.v['x'] = pos[0]
ng.v['y'] = pos[1]

(continues on next page)

1.3. Tutorials 59

deepgraph Documentation, Release 0.2.3

(continued from previous page)

configure nodes
kwds_scatter = {'s': 50,

'c': 'k'}

configure edges
split edges with only one type of connection
C_split_0 = ng.e['n_edges'].values.copy()
C_split_0[C_split_0 == 1] = 0

edges with one type of connection
kwds_quiver_0 = {'alpha': .3,

'width': .001}

edges with more than one type
kwds_quiver = {'headwidth': 1,

'width': .002,
'alpha': .7,
'cmap': 'Blues',
'clim': (1, ng.e.n_edges.max())}

create plot
fig, ax = plt.subplots(figsize=(15,15))
obj = ng.plot_2d('x', 'y', edges=True, C_split_0=C_split_0,

kwds_scatter=kwds_scatter, kwds_quiver_0=kwds_quiver_0,
kwds_quiver=kwds_quiver, ax=ax)

turn axis off, set x/y-lim and name nodes
ax.axis('off')
ax.set_xlim(ng.v.x.min() - 1, ng.v.x.max() + 1)
ax.set_ylim(ng.v.y.min() - 1, ng.v.y.max() + 1)
for i in ng.v.index:

plt.text(ng.v.at[i, 'x'],
ng.v.at[i, 'y'] + .2,
i, fontsize=8)

for el in ng.v['Education Level'].unique():
plt.text(ng.v[ng.v['Education Level'] == el].x.mean() - .5,

ng.v[ng.v['Education Level'] == el].y.max() + 1,
'EL {}'.format(el), fontsize=20)

60 Chapter 1. Contents

deepgraph Documentation, Release 0.2.3

We can now further partition the supergraph 𝐺𝑁 into groups with the same education level.

partition ng by "Education Level"
relation_funcs = {l: lambda x: x.notnull().sum() for l in layer_names}
relation_funcs['n_edges'] = 'sum'
ELnv, ELne = ng.partition_graph('Education Level',

relation_funcs=relation_funcs,
n_edges=False)

compute "undirected" weights
s = ELne.index.get_level_values(0)
t = ELne.index.get_level_values(1)
df1 = ELne[s <= t]
df2 = ELne[s > t].swaplevel(0,1)

(continues on next page)

1.3. Tutorials 61

deepgraph Documentation, Release 0.2.3

(continued from previous page)

df2.index.names = df2.index.names[::-1]
ELne = df1.add(df2, fill_value=0)

set dtypes
for col in ELne.columns:

ELne[col] = ELne[col].astype(int)

find the type of connection most dominant between supernodes
ELne['dominant_type'] = ELne[layer_names].idxmax(axis=1)

change column order
ELne = ELne[['n_edges'] + ['dominant_type'] + layer_names]

create graph
ELng = dg.DeepGraph(ELnv, ELne)
ELng

<DeepGraph object, with n=8 node(s) and m=30 edge(s) at 0x7fb8d1d245c0>

print(ELng.v)

n_nodes
Education Level
0 25
1 1
2 39
3 5
4 5
5 1
6 2
8 1

print(ELng.e)

n_edges dominant_type Business Communication
→˓O Logistics O Meetings O Operations O Training T Classmates T Friendship T
→˓Kinship T Soulmates
Education Level_s Education Level_t
0 0 45 O Operations 0 7
→˓ 2 1 16 15 1 1
→˓ 2 0

1 3 O Operations 0 0
→˓ 0 0 2 1 0 0
→˓ 0 0

2 146 O Operations 1 31
→˓ 3 7 43 32 9 16
→˓ 4 0

3 60 O Training 0 11
→˓ 2 2 14 19 2 9
→˓ 1 0

4 16 O Training 0 0
→˓ 0 0 6 9 1 0
→˓ 0 0
...
→˓
→˓ (continues on next page)

62 Chapter 1. Contents

deepgraph Documentation, Release 0.2.3

(continued from previous page)

4 8 1 O Operations 0 0
→˓ 0 0 1 0 0 0
→˓ 0 0
5 6 3 O Operations 0 1
→˓ 0 0 2 0 0 0
→˓ 0 0

8 2 O Operations 0 0
→˓ 0 0 1 1 0 0
→˓ 0 0
6 6 3 Communication 0 1
→˓ 0 1 1 0 0 0
→˓ 0 0

8 8 O Operations 1 1
→˓ 0 1 2 0 1 1
→˓ 0 1

[30 rows x 12 columns]

Let’s plot the supergraph of education levels, where the node size relates to the number of individuals, edge colors
correspond to the number of edges, and edge labels correspond to the most dominant type of connection between
nodes.

create graph_tool graph object
gtg = ELng.return_gt_graph(features=True, relations=True, node_indices=True)
gtg.set_directed(False)

get sfdp layout postitions
pos = gtd.sfdp_layout(gtg, vweight=gtg.vp['n_nodes'], eweight=gtg.ep['n_edges'])
pos = pos.get_2d_array([0, 1])

create plot
gtg.vp['n_nodes'].a *= 3
gtd.graph_draw(gtg,

vertex_text=gtg.vp['i'],
vertex_text_color='k', vertex_size=gtg.vp['n_nodes'],
edge_text=gtg.ep['dominant_type'],
edge_color=gtg.ep['n_edges'],
inline=True, output_size=(900,900), fit_view=True)

1.3. Tutorials 63

deepgraph Documentation, Release 0.2.3

Partitioning Edges Based on Node Properties

Here, we demonstrate very briefly how to use the additional information of the nodes to perform queries on the edges.

create "undirected" edge table (swap-copy all edges)
g.e = pd.concat((e, e.swaplevel(0,1)))
g.e.sort_index(inplace=True)

print(g.partition_edges(source_features=['Nationality']))

n_edges
Nationality_s

(continues on next page)

64 Chapter 1. Contents

deepgraph Documentation, Release 0.2.3

(continued from previous page)

3 1655
4 351
5 22

print(g.partition_edges(source_features=['Nationality'], target_features=['Military
→˓Training']))

n_edges
Nationality_s Military Training_t
3 0 185

1 51
3 847
4 60
5 115

... ...
5 4 3

5 1
7 1
9 1
10 1

[26 rows x 1 columns]

print(g.partition_edges(source_features=['Nationality'],
target_features=['Military Training'],
relations='type'))

n_edges
type Nationality_s Military Training_t
Business 3 0 3

3 16
4 1
9 2
10 2

... ...
T Soulmates 3 9 1

10 2
4 3 3

9 1
10 3

[138 rows x 1 columns]

Alternative Representation of the MLN Edges

The edges of the supra-graph representation as presented in the paper look like this

print(e_paper)

Business Communication O Logistics O Meetings O Operations O Training
→˓T Classmates T Friendship T Kinship T Soulmates
s t
9 67 2.0 NaN NaN NaN NaN NaN
→˓ NaN NaN NaN NaN

(continues on next page)

1.3. Tutorials 65

deepgraph Documentation, Release 0.2.3

(continued from previous page)

69 1.0 NaN NaN NaN NaN NaN
→˓ NaN NaN NaN NaN

77 1.0 NaN NaN NaN NaN NaN
→˓ NaN NaN NaN NaN
11 61 1.0 NaN NaN NaN NaN NaN
→˓ NaN NaN NaN NaN
20 59 1.0 NaN NaN NaN NaN NaN
→˓ NaN NaN NaN NaN
...
→˓
733 769 NaN NaN NaN NaN NaN NaN
→˓ NaN NaN NaN 1.0
755 769 NaN NaN NaN NaN NaN NaN
→˓ NaN NaN NaN 1.0

787 NaN NaN NaN NaN NaN NaN
→˓ NaN NaN NaN 1.0
771 788 NaN NaN NaN NaN NaN NaN
→˓ NaN NaN NaN 1.0
783 788 NaN NaN NaN NaN NaN NaN
→˓ NaN NaN NaN 1.0

[1014 rows x 10 columns]

As you can see, the edge table is also comprised of 1014 edges between the nodes in v. However, every type of
connection get’s its own column, where a “nan” value means that an edge does not have a relation of the corresponding
type.

What Next

Now that you have an idea of what the DeepGraph package provides, you should investigate the parts of the package
most useful for you. See API Reference for details.

1.4 API Reference

The API reference summarizes DeepGraph’s core class, its methods and the functions subpackage.

1.4.1 The DeepGraph class

DeepGraph([v, e, supernode_labels_by, . . .]) The core class of DeepGraph (dg).

deepgraph.deepgraph.DeepGraph

class DeepGraph(v=None, e=None, supernode_labels_by=None, superedge_labels_by=None)
The core class of DeepGraph (dg).

This class encapsulates the graph representation as pandas.DataFrame objects in its attributes v and e. It
can be initialized with a node table v, whose rows represent the nodes of the graph, as well as an edge table e,
whose rows represent edges between the nodes.

Given a node table v, it provides methods to iteratively compute pairwise relations between the nodes using
arbitrary, user-defined functions. These methods provide arguments to parallelize the computation and control
memory consumption (see create_edges and create_edges_ft).

66 Chapter 1. Contents

deepgraph Documentation, Release 0.2.3

Also provides methods to partition nodes, edges or an entire graph by the graph’s properties and labels, and to
create common network representations and graph objects of popular Python network packages.

Furthermore, it provides methods to visualize graphs and their properties and to benchmark the graph construc-
tion parameters.

Optionally, the convenience parameter supernode_labels_by can be passed, creating supernode labels
by enumerating all distinct (tuples of) values of a (multiple) column(s) of v . Superedge labels can be created
analogously, by passing the parameter superedge_labels_by.

Parameters

• v (pandas.DataFrame or pandas.HDFStore, optional
(default=None)) – The node table, a table representation of the nodes of a graph.
The index of v must be unique and represents the node indices. The column names of
v represent the types of features of the nodes, and each cell represents a feature of a
node. Only a reference to the input DataFrame is created, not a copy. May also be a
pandas.HDFStore, but only create_edges and create_edges_ft may then be
used (so far).

• e (pandas.DataFrame, optional (default=None)) – The edge table, a table
representation of the edges between the nodes given by v. Its index has to be a pandas.
core.index.MultiIndex, whose first level contains the indices of the source nodes,
and the second level contains the indices of the target nodes. Each row of e represents an
edge, column names of e represent the types of relations of the edges, and each cell in e
represents a relation of an edge. Only a reference to the input DataFrame is created, not a
copy.

• supernode_labels_by (dict, optional (default=None)) – A dictionary
whose keys are strings and their values are (lists of) column names of v. Appends a column
to v for each key, whose values correspond to supernode labels, enumerating all distinct
(tuples of) values of the column(s) given by the dict’s value.

• superedge_labels_by (dict, optional (default=None)) – A dictionary
whose keys are strings and their values are (lists of) column names of e. Appends a col-
umn to e for each key, whose values correspond to superedge labels enumerating all distinct
(tuples of) values of the column(s) given by the dict’s value.

v
See Parameters.

Type pandas.DataFrame

e
See Parameters.

Type pandas.DataFrame

n
Property: Number of nodes.

Type int

m
Property: Number of edges.

Type int

f
Property: types of features and number of features of corresponding type.

Type pd.DataFrame

1.4. API Reference 67

deepgraph Documentation, Release 0.2.3

r
Property: types of relations and number of relations of corresponding type.

Type pd.DataFrame

__init__(v=None, e=None, supernode_labels_by=None, superedge_labels_by=None)
Initialize self. See help(type(self)) for accurate signature.

Methods

__init__([v, e, supernode_labels_by, . . .]) Initialize self.
append_binning_labels_v(col, col_name[,
. . .])

Append a column with binning labels of the values
in v[col].

append_cp([directed, connection, col_name, . . .]) Append a component membership column to v.
append_datetime_categories_v([col,
. . .])

Append datetime categories to v.

create_edges([connectors, selectors, . . .]) Create an edge table e linking the nodes in v.
create_edges_ft(ft_feature[, connectors, . . .]) Create (ft) an edge table e linking the nodes in v.
filter_by_interval_e(col, interval[, end-
point])

Keep only edges in e with relations of type col in
interval.

filter_by_interval_v(col, interval[, end-
point])

Keep only nodes in v with features of type col in
interval.

filter_by_values_e(col, values) Keep only edges in e with relations of type col in
values.

filter_by_values_v(col, values) Keep only nodes in v with features of type col in
values.

partition_edges([relations, . . .]) Return a superedge DataFrame se.
partition_graph(features[, feature_funcs,
. . .])

Return supergraph DataFrames sv and se.

partition_nodes(features[, feature_funcs,
. . .])

Return a supernode DataFrame sv.

plot_2d(x, y[, edges, C, C_split_0, . . .]) Plot nodes and corresponding edges in 2 dimensions.
plot_2d_generator(x, y, by[, edges, C, . . .]) Plot nodes and corresponding edges by groups.
plot_3d(x, y, z[, edges, kwds_scatter, . . .]) Work in progress!
plot_hist(x[, bins, log_bins, density, . . .]) Plot a histogram (or pdf) of x.
plot_logfile(logfile) Plot a logfile.
plot_map(lon, lat[, edges, C, C_split_0, . . .]) Plot nodes and corresponding edges on a basemap.
plot_map_generator(lon, lat, by[, edges, C,
. . .])

Plot nodes and corresponding edges by groups, on
basemaps.

plot_raster(label[, time, ax]) Work in progress!
plot_rects_label_numeric(label, xl, xr[,
. . .])

Work in progress!

plot_rects_numeric_numeric(yb, yt, xl,
xr[, . . .])

Work in progress!

return_cs_graph([relations, dropna]) Return scipy.sparse.coo_matrix represen-
tation(s).

return_gt_graph([features, relations, . . .]) Return a graph_tool.Graph representation.
return_nx_graph([features, relations, dropna]) Return a networkx.DiGraph representation.
return_nx_multigraph([features, relations,
. . .])

Return a networkx.MultiDiGraph representa-
tion.

update_edges() After removing nodes in v, update e.

68 Chapter 1. Contents

deepgraph Documentation, Release 0.2.3

Attributes

f Types of features and number of features of corre-
sponding type.

m The number of edges
n The number of nodes
r Types of relations and number of relations of corre-

sponding type.

Creating Edges

DeepGraph.create_edges([connectors, . . .]) Create an edge table e linking the nodes in v.
DeepGraph.create_edges_ft(ft_feature[, . . .]) Create (ft) an edge table e linking the nodes in v.

deepgraph.deepgraph.DeepGraph.create_edges

DeepGraph.create_edges(connectors=None, selectors=None, transfer_features=None,
r_dtype_dic=None, no_transfer_rs=None, step_size=10000000,
from_pos=0, to_pos=None, hdf_key=None, verbose=False, logfile=None)

Create an edge table e linking the nodes in v.

This method enables an iterative computation of pairwise relations (edges) between the nodes represented by
v. It does so in a flexible, efficient and vectorized fashion, easily parallelizable and with full control over RAM
usage.

1. Connectors

The simplest use-case is to define a single connector function acting on a single column of the node table v. For
instance, given a node table v

>>> import pandas as pd
>>> import deepgraph as dg
>>> v = pd.DataFrame({'time': [0.,2.,9.], 'x': [3.,1.,12.]})
>>> g = dg.DeepGraph(v)

>>> g.v
time x

0 0 3
1 2 1
2 9 12

one may define a function

>>> def time_difference(time_s, time_t):
... dt = time_t - time_s
... return dt

and pass it to create_edges, in order to compute the time difference of each pair of nodes

>>> g.create_edges(connectors=time_difference)

>>> g.e
dt

s t

(continues on next page)

1.4. API Reference 69

deepgraph Documentation, Release 0.2.3

(continued from previous page)

0 1 2
2 9

1 2 7

As one can see, the connector function takes column names of vwith additional ‘_s’ and ‘_t’ endings (indicating
source node values and target node values, respectively) as input, and returns a variable with the computed
values. The resulting edge table g.e is indexed by the node indices (‘s’ and ‘t’, representing source and target
node indices, respectively), and has one column (‘dt’, the name of the returned variable) with the computed
values of the given connector. Note that only the upper triangle adjacency matrix is computed, which is always
the case. See Notes for further information.

One may also pass a list of functions to connectors, which are then computed in the list’s order. Generally,
a connector function can take multiple column names of v (with ‘_s’ and/or ‘_t’ appended) as input, as well
as already computed relations of former connectors. Also, any connector function may have multiple output
variables. Every output variable has to be a 1-dimensional np.ndarray (with arbitrary dtype, including
object). The return statement may not contain any operators, only references to each computed relation.

For instance, considering the above example, one may define an additional connector

>>> def velocity(dt, x_s, x_t):
... dx = x_t - x_s
... v = dx / dt
... return v, dx

and then apply both connectors on v, resulting in

>>> g.create_edges(connectors=[time_difference, velocity])

>>> g.e
dt dx v

s t
0 1 2 -2 -1.000000
2 9 9 1.000000

1 2 7 11 1.571429

2. Selectors

However, one is often only interested in a subset of all possible edges. In order to select edges during the
iteration process - based on some conditions on the node’s features and their computed relations - one may pass
a (list of) selector function(s) to create_edges. For instance, given the above example, one may define a
selector

>>> def dt_thresh(dt, sources, targets):
... sources = sources[dt > 5]
... targets = targets[dt > 5]
... return sources, targets

and apply it in conjunction with the time_difference connector

>>> g.create_edges(connectors=time_difference, selectors=dt_thresh)

>>> g.e
dt

s t

(continues on next page)

70 Chapter 1. Contents

deepgraph Documentation, Release 0.2.3

(continued from previous page)

0 2 9
1 2 7

leaving only edges with a time difference larger than 5.

Every selector function must have sources and targets as input arguments as well as in the return state-
ment. Most generally, they may depend on column names of v (with ‘_s’ and/or ‘_t’ appended) and/or computed
relations of connector functions, and/or computed relations of former selector functions. Apart from sources
and targets, they may additionally return computed relations. Given this input/output flexibility of selectors,
one could in fact compute all required relations, and select any desired subset of edges, with a single selector
function. The purpose of splitting connectors and/or selectors, however, is to control the iteration’s performance
by consecutively computing relations and selecting edges: hierarchical selection.

3. Hierarchical Selection

As the algorithm iterates through the chunks of all possible source and target node indices ([0, g.n*(g.n-1)/2]),
it goes through the list of selectors at each step. If a selector has a relation as input, it must have either
been computed by a former selector, or the selector requests its computation by the corresponding connector
function in connectors (this connector may not depend on any other not yet computed relations). Once the
input relations are computed (if requested), the selector is applied and returns updated indices, which are then
passed to the next selector. Hence, with each selector, the indices are reduced and consecutive computation of
relations only consider the remaining indices. After all selectors have been applied, the connector functions that
have not been requested by any selector are computed (on the final, reduced chunk of node and target indices).

4. Transferring Features

The argument transfer_features, which takes a (list of) column name(s) of v, makes it possible to
transfer features of v to the created edge table e

>>> g.create_edges(connectors=time_difference,
... transfer_features=['x', 'time'])

>>> g.e
dt time_s time_t x_s x_t

s t
0 1 2 0 2 3 1
2 9 0 9 3 12

1 2 7 2 9 1 12

If computation time and memory consumption are of no concern, one might skip the remaing paragraphs.

5. Logging

Clearly, the order of the hierarchical selection as described in 3. influences the computation’s efficiency. The
complexity of a relation’s computation and the (expected average) number of deleted edges of a selector should
be considered primarily. In order to track and benchmark the iteration process, the progress and time measure-
ments are printed for each iteration step, if verbose is set to True. Furthermore, one may create a logfile
(which can also be plot by dg.DeepGraph.plot_logfile) by setting the argument logfile to a string,
indicating the file name of the created logfile.

6. Parallelization and Memory Control

The arguments from_pos, to_pos and step_size control the range of processed pairs of nodes and the
number of pairs of nodes to process at each iteration step. They may be used for parallel computation and to
control RAM usage. See Parameters for details.

It is also possible to initiate dg.DeepGraph with a pandas.HDFStore containing the DataFrame
representing the node table. Only the data requested by transfer_features and the user- defined

1.4. API Reference 71

deepgraph Documentation, Release 0.2.3

connectors and selectors at each iteration step is then pulled from the store, which is particularly useful
for large node tables and parallel computation. The only requirement is that the node table contained in the store
is in table(t) format, not fixed(f) format. For instance, considering the above created node table, one may store
it in a hdf file

>>> vstore = pd.HDFStore('vstore.h5')
>>> vstore.put('node_table', v, format='t', index=False)

initiate a DeepGraph instance with the store

>>> g = dg.DeepGraph(vstore)

>>> g.v
<class 'pandas.io.pytables.HDFStore'>
File path: vstore.h5
/node_table frame_table (typ->appendable,nrows->3,ncols->2,
indexers->[index])

and then create edges the same way as if g.v were a DataFrame

>>> g.create_edges(connectors=time_difference)

>>> g.e
dt

s t
0 1 2
2 9

1 2 7

In case the store has multiple nodes, hdf_key has to be set to the node corresponding to the node table of the
graph.

Also, one may pass a (list of) name(s) of computed relations, no_transfer_rs, which should not be trans-
ferred to the created edge table e. This can be advantageous, for instance, if a selector depends on computed
relations that are of no further interest.

Furthermore, it is possible to force the dtype of computed relations with the argument r_dtype_dic. The
dtype of a relation is then set at each iteration step, but after all selectors and connectors were processed.

7. Creating Edges on a Fast Track

If the selection of edges includes a simple distance threshold, i.e. a selector function defined as follows:

>>> def ft_selector(x_s, x_t, threshold, sources, targets):
... dx = x_t - x_s
... sources = sources[dx <= threshold]
... targets = targets[dx <= threshold]
... return sources, targets, dx

the method create_edges_ft should be considered, since it provides a much faster iteration algorithm.

Parameters

• connectors (function or array_like, optional (default=None)) –
User defined connector function(s) that compute pairwise relations between the nodes in
v. A connector accepts multiple column names of v (with ‘_s’ and/or ‘_t’ appended, indi-
cating source node values and target node values, respectively) as input, as well as already
computed relations of former connectors. A connector function may have multiple output
variables. Every output variable has to be a 1-dimensional np.ndarray (with arbitrary

72 Chapter 1. Contents

deepgraph Documentation, Release 0.2.3

dtype, including object). See above and dg.functions for examplary connector func-
tions.

• selectors (function or array_like, optional (default=None)) –
User defined selector function(s) that select edges during the iteration process, based on
some conditions on the node’s features and their computed relations. Every selector func-
tion must have sources and targets as input arguments as well as in the return state-
ment. A selector may depend on column names of v (with ‘_s’ and/or ‘_t’ appended) and/or
computed relations of connector functions, and/or computed relations of former selector
functions. Apart from sources and targets, they may also return computed relations
(see connectors). See above, and dg.functions for exemplary selector functions.

• transfer_features (str, int or array_like, optional
(default=None)) – A (list of) column name(s) of v, indicating which features of
v to transfer to e (appending ‘_s’ and ‘_t’ to the column names of e, indicating source and
target node features, respectively).

• r_dtype_dic (dict, optional (default=None)) – A dictionary with names
of computed relations of connectors and/or selectors as keys and dtypes as values. Forces
the data types of the computed relations in e during the iteration (but after all selectors and
connectors were processed), otherwise infers them.

• no_transfer_rs (str or array_like, optional (default=None)) –
Name(s) of computed relations that are not to be transferred to the created edge table e.
Can be used to save memory, e.g., if a selector depends on computed relations that are of no
interest otherwise.

• step_size (int, optional (default=1e6)) – The number of pairs of nodes
to process at each iteration step. Must be in [1, g.n*(g.n-1)/2]. Its value determines
computation speed and memory consumption.

• from_pos (int, optional (default=0)) – Determines from which pair of nodes
to start the iteration process. Must be in [0, g.n*(g.n-1)/2 [. May be used in conjuction with
to_pos for parallel computation.

• to_pos (positive integer, optional (default=None)) – Determines at
which pair of nodes to stop the iteration process (the endpoint is excluded). Must be in
[1, g.n*(g.n-1)/2] and larger than from_pos. Defaults to None, which translates to the
last pair of nodes, g.n*(g.n-1)/2. May be used in conjunction with from_pos for parallel
computation.

• hdf_key (str, optional (default=None)) – If you initialized dg.
DeepGraph with a pandas.HDFStore and the store has multiple nodes, you
must pass the key to the node in the store that corresponds to the node table.

• verbose (bool, optional (default=False)) – Whether to print information at
each step of the iteration process.

• logfile (str, optional (default=None)) – Create a log-file named by
logfile. Contains the time and date of the method’s call, the input arguments and
time mesaurements for each iteration step. A plot of logfile can be created by dg.
DeepGraph.plot_logfile.

Returns e – Set the created edge table e as attribute of dg.DeepGraph.

Return type pd.DataFrame

See also:

create_edges_ft()

1.4. API Reference 73

deepgraph Documentation, Release 0.2.3

Notes

1. Input and output data types

Since connectors (and selectors) take columns of a pandas DataFrame as input, there are no restrictions on
the data types of which pairwise relations are computed. In the most general case, a DataFrame’s column has
object as dtype, and its values may then be arbitrary Python objects. The same goes for the output variables
of connectors (and selectors). The only requirement is that each ouput variable is 1-dimensional.

However, it is also possible to use the values of a column of v as references to arbitrary objects, which may
sometimes be more convenient. In case a connector (or selector) needs the node’s original indices as input, one
may simply copy them to a column, e.g.

>>> v['indices'] = v.index

and then define the connector’s (or selector’s) input arguments accordingly.

2. Connectors and selectors

The only requirement on connectors and selectors is that their input arguments and return statements are consis-
tent with the column names of v and the passing of computed relations (see above, 3. Hierarchical Selection).

Whatever happens inside the functions is entirely up to the user. This means, for instance, that one may
wrap arbitrary functions within a connector (selector), such as optimized C functions or existing func-
tions whose input/output is not consistent with the create_edges method (see, e.g., the methods pro-
vided in dg.functions, scipy or scikit learn’s sklearn.metrics and sklearn.neighbors.
DistanceMetric). One could also store a connector’s (selector’s) computations directly within the function,
or let the function print out any desired information during iteration.

3. Why not compute the full adjacency matrix?

This is due to efficiency. For any asymmetric function (i.e., f(s, t) != f(t, s)), one can always create an additional
connector (or output variable) that computes the mirrored values of that function.

deepgraph.deepgraph.DeepGraph.create_edges_ft

DeepGraph.create_edges_ft(ft_feature, connectors=None, selectors=None, transfer_features=None,
r_dtype_dic=None, no_transfer_rs=None, min_chunk_size=1000,
max_pairs=10000000, from_pos=0, to_pos=None, hdf_key=None,
verbose=False, logfile=None)

Create (ft) an edge table e linking the nodes in v.

This method implements the same functionalities as create_edges, with the difference of providing a
much quicker iteration algorithm based on a so-called fast-track feature. It is advised to read the docstring
of create_edges before this one, since only the differences are explained in the following.

Apart from the hierarchical selection through connectors and selectors as described in the method
create_edges (see 1.-3.), this method necessarily includes the (internal) selector function

>>> def ft_selector(ftf_s, ftf_t, ftt, sources, targets):
... ft_r = ftf_t - ftf_s
... sources = sources[ft_r <= ftt]
... targets = targets[ft_r <= ftt]
... return sources, targets, ft_r

where ftf is the fast-track feature (a column name of v), ftt the fast-track threshold (a positive number),
and ft_r the computed fast-track relation. The argument ft_feature, which has to be a tuple (ftf, ftt),
determines these variables.

74 Chapter 1. Contents

deepgraph Documentation, Release 0.2.3

1. The Fast-Track Feature

The simplest use-case, therefore, is to only pass ft_feature. For instance, given a node table

>>> import pandas as pd
>>> import deepgraph as dg
>>> v = pd.DataFrame({'time': [-3.6,-1.1,1.4,4., 6.3],
... 'x': [-3.,3.,1.,12.,7.]})
>>> g = dg.DeepGraph(v)

>>> g.v
time x

0 -3.6 -3
1 -1.1 3
2 1.4 1
3 4.0 12
4 6.3 7

one may create and select edges by

>>> g.create_edges_ft(ft_feature=('time', 5))

>>> g.e
ft_r

s t
0 1 2.5
2 5.0

1 2 2.5
2 3 2.6
4 4.9

3 4 2.3

leaving only edges with a time difference smaller than (or equal to) ftt = 5. Note that the node table always
has to be sorted by the fast-track feature. This is due to the fact that the algorithm only processes pairs of nodes
whose fast-track relation is smaller than (or equal to) the fast-track threshold, and the (pre)determination of
these pairs relies on a sorted DataFrame.

2. Hierarchical Selection

Additionally, one may define connectors and selectors as described in create_edges (see 1.-3.). Per
default, the (internal) fast-track selector is applied first. It’s order of application, however, may be determined
by inserting the string ‘ft_selector’ in the desired position of the list of selectors.

The remaining arguments are as described in create_edges, apart from min_chunk_size, max_pairs,
from_pos and to_pos. If computation time and/or memory consumption are a concern, one may therefore
read the remaining paragraph.

3. Parallelization and Memory Control on a FastTrack

At each iteration step, the algorithm takes a number of nodes (n = min_chunk_size, per default n=1000)
and computes the fast track relation (distance) between the last node and the first node, d_ftf = ftf_last - ftf_first.
In case d_ftf > ftt, all nodes with a fast- track feature < ftf_last - ftt are considered source nodes, and their
relations with all n nodes are computed (hierarchical selection). In case d_ftf <= ftt, n is increased, s.t. d_ftf >
ftt. This might lead to a large number of pairs of nodes to process at a given iteration step. In order to control
memory consumption, one might therefore set max_pairs to a suitable value, triggering a subiteration if this
value is exceeded.

In order to parallelize the iterative computation, one may pass the arguments from_pos and to_pos. They
determine the range of source nodes to process (endpoint excluded). Hence, from_pos has to be in [0, g.n[,

1.4. API Reference 75

deepgraph Documentation, Release 0.2.3

and to_pos in [1,g.n]. For instance, given the node table above

>>> g.v
time x

0 -3.6 -3
1 -1.1 3
2 1.4 1
3 4.0 12
4 6.3 7

we can compute all relations of the source nodes in [1,3[by

>>> g.create_edges_ft(ft_feature=('time', 5), from_pos=1, to_pos=3)

>>> g.e
ft_r

s t
1 2 2.5
2 3 2.6
4 4.9

Like create_edges, this method also works with a pd.HDFStore containing the DataFrame represent-
ing the node table. Only the data requested by ft_feature, transfer_features and the user-defined
connectors and selectors at each iteration step is then pulled from the store. The node table in the store
has to be in table(t) format, and additionally, the fast_track feature has to be a data column. For instance, storing
the above node table

>>> vstore = pd.HDFStore('vstore.h5')
>>> vstore.put('node_table', v, format='t', data_columns=True,
... index=False)

one may initiate a DeepGraph instance with the store

>>> g = dg.DeepGraph(vstore)

>>> g.v
<class 'pandas.io.pytables.HDFStore'>
File path: vstore.h5
/node_table frame_table (typ->appendable,nrows->5,ncols->2,
indexers->[index],dc->[time,x])

and then create edges the same way as if g.v were a DataFrame

>>> g.create_edges_ft(ft_feature=('time', 5), from_pos=1, to_pos=3)

>>> g.e
ft_r

s t
1 2 2.5
2 3 2.6
4 4.9

Warning: There is no assertion whether the node table in a store is sorted by the fast-track feature! The
result of an unsorted table is unpredictable, and generally not correct.

76 Chapter 1. Contents

deepgraph Documentation, Release 0.2.3

Parameters

• ft_feature (tuple) – A tuple (ftf, ftt), where ftf is a column name of v (the fast-
track feature) and ftt a positive number (the fast-track threshold). The fast-track feature
may contain integers or floats, but datetime-like values are also accepted. In that case,
ft_feature has to be a tuple of length 3, (ftf, ftt, dt_unit), where dt_unit is on of
{‘D’,’h’,’m’,’s’,’ms’,’us’,’ns’}:

– D: days

– h: hours

– m: minutes

– s: seconds

– ms: milliseconds

– us: microseconds

– ns: nanoseconds

determining the unit in which the temporal distance is measured. The variable name of the
fast-track relation transferred to e is ft_r.

• connectors (function or array_like, optional (default=None)) –
User defined connector function(s) that compute pairwise relations between the nodes in
v. A connector accepts multiple column names of v (with ‘_s’ and/or ‘_t’ appended, indi-
cating source node values and target node values, respectively) as input, as well as already
computed relations of former connectors. A connector function may have multiple output
variables. Every output variable has to be a 1-dimensional np.ndarray (with arbitrary
dtype, including object). A connector may also depend on the fast- track relations (‘ft_r’).
See dg.functions for examplary connector functions.

• selectors (function or array_like, optional (default=None)) –
User defined selector function(s) that select edges during the iteration process, based on
some conditions on the node’s features and their computed relations. Every selector func-
tion must have sources and targets as input arguments as well as in the return state-
ment. A selector may depend on column names of v (with ‘_s’ and/or ‘_t’ appended) and/or
computed relations of connector functions, and/or computed relations of former selector
functions. Apart from sources and targets, they may also return computed relations
(see connectors). A selector may also depend on the fast-track relations (‘ft_r’). See dg.
functions for exemplary selector functions.

Note: To specify the hierarchical order of the selection by the fast-track selector, insert
the string ‘ft_selector’ in the corresponding position of the selectors list. Otherwise,
computation of ft_r and selection by the fast-track selector is carried out first.

• transfer_features (str, int or array_like, optional
(default=None)) – A (list of) column name(s) of v, indicating which features of
v to transfer to e (appending ‘_s’ and ‘_t’ to the column names of e, indicating source and
target node features, respectively).

• r_dtype_dic (dict, optional (default=None)) – A dictionary with names
of computed relations of connectors and/or selectors as keys and dtypes as values. Forces
the data types of the computed relations in e during the iteration (but after all selectors and
connectors were processed), otherwise infers them.

• no_transfer_rs (str or array_like, optional (default=None)) –
Name(s) of computed relations that are not to be transferred to the created edge table e.

1.4. API Reference 77

deepgraph Documentation, Release 0.2.3

Can be used to save memory, e.g., if a selector depends on computed relations that are of no
interest otherwise.

• min_chunk_size (int, optional (default=1000)) – The minimum number
of nodes to form pairs of at each iteration step. See above for details.

• max_pairs (positive integer, optional (default=1e6)) – The maxi-
mum number of pairs of nodes to process at any given iteration step. If the number is
exceeded, a memory saving subiteration is applied.

• from_pos (int, optional (default=0)) – The locational index (.iloc) of v to
start the iteration. Determines the range of source nodes to process, in conjuction with
to_pos. Has to be in [0, g.n[, and smaller than to_pos. See above for details and an
example.

• to_pos (int, optional (default=None)) – The locational index (.iloc) of v to
end the iteration (excluded). Determines the range of source nodes to process, in conjuction
with from_pos. Has to be in [1, g.n], and larger than from_pos. Defaults to None, which
translates to the last node of v, to_pos=g.n. See above for details and an example.

• hdf_key (str, optional (default=None)) – If you initialized dg.
DeepGraph with a pandas.HDFStore and the store has multiple nodes, you
must pass the key to the node in the store that corresponds to the node table.

• verbose (bool, optional (default=False)) – Whether to print information at
each step of the iteration process.

• logfile (str, optional (default=None)) – Create a log-file named by
logfile. Contains the time and date of the method’s call, the input arguments and
time mesaurements for each iteration step. A plot of logfile can be created by dg.
DeepGraph.plot_logfile.

Returns e – Set the created edge table e as attribute of dg.DeepGraph.

Return type pd.DataFrame

See also:

create_edges()

Notes

The parameter min_chunk_size enforces a vectorized iteration and changing its value can both accelerate
or slow down computation time. This depends mostly on the distribution of values of the fast track feature, and
the complexity of the given connectors and selectors. Use the logging capabilites to determine a good
value.

When using a pd.HDFStore for the computation, the following advice might be considered. Recall that the
only requirements on the node in the store are: the format is table(t), not fixed(t); the node is sorted by the
fast-track feature; and the fast-track feature is a data column.

The recommended procedure of storing a given node table v in a store is the following (using the above node
table):

>>> vstore = pd.HDFStore('vstore.h5')
>>> vstore.put('node_table', v, format='t', data_columns=True,
... index=False)

78 Chapter 1. Contents

deepgraph Documentation, Release 0.2.3

Setting index=False significantly decreases the time to construct the node in the store, and also reduces the re-
sulting file size. It has no impact, however, on the capability of querying the store (with the pd.HDFStore.select*
methods).

However, there are two reasons one might want to create a pytables index of the fast-track feature:

1. The node table might be too large to be sorted in memory. To sort it on disc, one may proceed as follows.
Assuming an unsorted (large) node table

>>> v = pd.DataFrame({'time': [6.3,-3.6,4.,-1.1,1.4],
... 'x': [-3.,3.,1.,12.,7.]})

>>> v
time x

0 6.3 -3
1 -3.6 3
2 4.0 1
3 -1.1 12
4 1.4 7

one stores it as recommended

>>> vstore = pd.HDFStore('vstore.h5')
>>> vstore.put('node_table', v, format='t', data_columns=True,
... index=False)
>>> vstore.get_storer('node_table').group.table
/node_table/table (Table(5,)) ''
description := {
"index": Int64Col(shape=(), dflt=0, pos=0),
"time": Float64Col(shape=(), dflt=0.0, pos=1),
"x": Float64Col(shape=(), dflt=0.0, pos=2)}
byteorder := 'little'
chunkshape := (2730,)

creates a (full) pytables index of the fast-track feature

>>> vstore.create_table_index('node_table', columns=['time'],
... kind='full')
>>> vstore.get_storer('node_table').group.table
/node_table/table (Table(5,)) ''
description := {
"index": Int64Col(shape=(), dflt=0, pos=0),
"time": Float64Col(shape=(), dflt=0.0, pos=1),
"x": Float64Col(shape=(), dflt=0.0, pos=2)}
byteorder := 'little'
chunkshape := (2730,)
autoindex := True
colindexes := {

"time": Index(6, full, shuffle, zlib(1)).is_csi=True}

and then sorts it on disc with

>>> vstore.close()
>>> !ptrepack --chunkshape=auto --sortby=time vstore.h5 s_vstore.h5
>>> s_vstore = pd.HDFStore('s_vstore.h5')

>>> s_vstore.node_table
time x

(continues on next page)

1.4. API Reference 79

deepgraph Documentation, Release 0.2.3

(continued from previous page)

1 -3.6 3
3 -1.1 12
4 1.4 7
2 4.0 1
0 6.3 -3

2. To speed up the internal queries on the fast-track feature

>>> s_vstore.create_table_index('node_table', columns=['time'],
... kind='full')

See http://stackoverflow.com/questions/17893370/ptrepack-sortby-needs-full-index and https://gist.github.
com/michaelaye/810bd0720bb1732067ff for details, benchmarks, and the effects of compressing the store.

Graph Partitioning

DeepGraph.partition_nodes(features[, . . .]) Return a supernode DataFrame sv.
DeepGraph.partition_edges([relations, . . .]) Return a superedge DataFrame se.
DeepGraph.partition_graph(features[, . . .]) Return supergraph DataFrames sv and se.

deepgraph.deepgraph.DeepGraph.partition_nodes

DeepGraph.partition_nodes(features, feature_funcs=None, n_nodes=True, return_gv=False)
Return a supernode DataFrame sv.

This is essentially a wrapper around the pandas groupby method: sv =
v.groupby(features).agg(feature_funcs). It creates a (intersection) partition of the nodes in v
by the type(s) of feature(s) features, resulting in a supernode DataFrame sv. By passing a dictionary of
functions on the features of v, feature_funcs, one may aggregate user-defined values of the partition’s
elements, the supernodes’ features. If n_nodes is True, create a column with the number of each supernode’s
constituent nodes. If return_gv is True, return the created groupby object to facilitate additional operations,
such as gv.apply(func, *args, **kwargs).

For details, type help(v.groupby), and/or inspect the available methods of gv.

For examples, see below. For an in-depth description and mathematical details of graph partitioning, see https:
//arxiv.org/pdf/1604.00971v1.pdf, in particular Sec. III A, E and F.

Parameters

• features (str, int or array_like) – Column name(s) of v, indicating the
type(s) of feature(s) used to induce a (intersection) partition. Creates a pandas groupby
object, gv = v.groupby(features).

• feature_funcs (dict, optional (default=None)) – Each key must be a col-
umn name of v, each value either a function, or a list of functions, working when passed a
pandas.DataFrame or when passed to pandas.DataFrame.apply. See the doc-
string of gv.agg for details: help(gv.agg).

• n_nodes (bool, optional (default=True)) – Whether to create a n_nodes
column in sv, indicating the number of nodes in each supernode.

• return_gv (bool, optional (default=False)) – If True, also return the
v.groupby(features) object, gv.

80 Chapter 1. Contents

http://stackoverflow.com/questions/17893370/ptrepack-sortby-needs-full-index
https://gist.github.com/michaelaye/810bd0720bb1732067ff
https://gist.github.com/michaelaye/810bd0720bb1732067ff
https://arxiv.org/pdf/1604.00971v1.pdf
https://arxiv.org/pdf/1604.00971v1.pdf

deepgraph Documentation, Release 0.2.3

Returns

• sv (pd.DataFrame) – The aggreated DataFrame of supernodes, sv.

• gv (pandas.core.groupby.DataFrameGroupBy) – The pandas groupby object,
v.groupby(features).

See also:

partition_edges(), partition_graph()

Notes

Currently, NA groups in GroupBy are automatically excluded (silently). One workaround is to use a placeholder
(e.g., -1, ‘none’) for NA values before doing the groupby (calling this method). See http://stackoverflow.com/
questions/18429491/groupby-columns-with-nan-missing-values and https://github.com/pydata/pandas/issues/
3729.

Examples

First, we need a node table, in order to demonstrate its partitioning:

>>> import pandas as pd
>>> import deepgraph as dg
>>> v = pd.DataFrame({'x': [-3.4,2.1,-1.1,0.9,2.3],
... 'time': [0,0,2,2,9],
... 'color': ['g','g','b','g','r'],
... 'size': [1,3,2,3,1]})
>>> g = dg.DeepGraph(v)
>>> g.v
color size time x

0 g 1 0 -3.4
1 g 3 0 2.1
2 b 2 2 -1.1
3 g 3 2 0.9
4 r 1 9 2.3

Create a partition by the type of feature ‘color’:

>>> g.partition_nodes('color')
n_nodes

color
b 1
g 3
r 1

Create an intersection partition by the types of features ‘color’ and ‘size’ (which is a further refinement of the
last partition):

>>> g.partition_nodes(['color', 'size'])
n_nodes

color size
b 2 1
g 1 1

3 2
r 1 1

1.4. API Reference 81

http://stackoverflow.com/questions/18429491/groupby-columns-with-nan-missing-values
http://stackoverflow.com/questions/18429491/groupby-columns-with-nan-missing-values
https://github.com/pydata/pandas/issues/3729
https://github.com/pydata/pandas/issues/3729

deepgraph Documentation, Release 0.2.3

Partition by ‘color’ and collect x values:

>>> g.partition_nodes('color', {'time': lambda x: list(x)})
n_nodes time

color
b 1 [2]
g 3 [0, 0, 2]
r 1 [9]

Partition by ‘color’ and aggregate with different functions:

>>> g.partition_nodes('color', {'time': [lambda x: list(x), np.max],
... 'x': [np.mean, np.sum, np.std]})

n_nodes x_mean x_sum x_std time_<lambda> time_amax
color
b 1 -1.100000 -1.1 NaN [2] 2
g 3 -0.133333 -0.4 2.891943 [0, 0, 2] 2
r 1 2.300000 2.3 NaN [9] 9

deepgraph.deepgraph.DeepGraph.partition_edges

DeepGraph.partition_edges(relations=None, source_features=None, target_features=None, rela-
tion_funcs=None, n_edges=True, return_ge=False)

Return a superedge DataFrame se.

This method allows you to partition the edges in e by their types of relations, but also by the types of features
of their incident source and target nodes, and any combination of the three.

Essentially, this method is a wrapper around the pandas groupby method: se = e.groupby(relations
+ features_s + features_t).agg(relation_funcs), where relations are column names of e, and
in order to group e by features_s and/or features_t, the features of type source_features and/or
target_features (column names of v) are transferred to e, appending ‘_s’ and/or ‘_t’ to the corresponding
column names of e (if they are not already present). The only requirement on the combination of relations,
source_features and target_features is that at least on of the lists has to be of length >= 1.

By passing a dictionary of functions on the relations of e, relation_funcs, one may aggregate user-defined
values of the partition’s elements, the superedges’ relations. If n_edges is True, create a column with the
number of each superedge’s constituent edges. If return_ge is True, return the created groupby object to
facilitate additional operations, such as ge.apply(func, *args, **kwargs).

For details, type help(g.e.groupby), and/or inspect the available methods of ge.

For examples, see below. For an in-depth description and mathematical details of graph partitioning, see https:
//arxiv.org/pdf/1604.00971v1.pdf, in particular Sec. III B, E and F.

Parameters

• relations (str, int or array_like, optional (default=None)) –
Column name(s) of e, indicating the type(s) of relation(s) used to induce a (intersection)
partition of e (in conjunction with source_features and target_features).

• source_features (str, int or array_like, optional
(default=None)) – Column name(s) of v, indicating the type(s) of feature(s) of
the edges’ incident source nodes used to induce a (intersection) partition of e (in
conjunction with relations and target_features).

• target_features (str, int or array_like, optional
(default=None)) – Column name(s) of v, indicating the type(s) of feature(s) of

82 Chapter 1. Contents

https://arxiv.org/pdf/1604.00971v1.pdf
https://arxiv.org/pdf/1604.00971v1.pdf

deepgraph Documentation, Release 0.2.3

the edges’ incident target nodes used to induce a (intersection) partition of e (in conjunction
with relations and source_features).

• relation_funcs (dict, optional (default=None)) – Each key must be a
column name of e, each value a (list of) function(s), working when passed a pandas.
DataFrame or when passed to pandas.DataFrame.apply. See the docstring of
ge.agg for details: help(ge.agg).

• n_edges (bool, optional (default=True)) – Whether to create a n_edges
column in se, indicating the number of edges in each superedge.

• return_ge (bool, optional (default=False)) – If True, also return the pan-
das groupby object, ge.

Returns

• se (pd.DataFrame) – The aggreated DataFrame of superedges, se.

• ge (pandas.core.groupby.DataFrameGroupBy) – The pandas groupby object, ge.

See also:

partition_nodes(), partition_graph()

Notes

Currently, NA groups in GroupBy are automatically excluded (silently). One workaround is to use a placeholder
(e.g., -1, ‘none’) for NA values before doing the groupby (calling this method). See http://stackoverflow.com/
questions/18429491/groupby-columns-with-nan-missing-values and https://github.com/pydata/pandas/issues/
3729.

Examples

First, we need to create a graph in order to demonstrate how to partition its edge set.

Create a node table:

>>> import pandas as pd
>>> import deepgraph as dg
>>> v = pd.DataFrame({'x': [-3.4,2.1,-1.1,0.9,2.3],
... 'time': [0,1,2,5,9],
... 'color': ['g','g','b','g','r'],
... 'size': [1,3,2,3,1]})
>>> g = dg.DeepGraph(v)

>>> g.v
color size time x

0 g 1 0 -3.4
1 g 3 1 2.1
2 b 2 2 -1.1
3 g 3 5 0.9
4 r 1 9 2.3

Create an edge table:

>>> def some_relations(ft_r, x_s,x_t,color_s,color_t,size_s,size_t):
... dx = x_t - x_s
... v = dx / ft_r

(continues on next page)

1.4. API Reference 83

http://stackoverflow.com/questions/18429491/groupby-columns-with-nan-missing-values
http://stackoverflow.com/questions/18429491/groupby-columns-with-nan-missing-values
https://github.com/pydata/pandas/issues/3729
https://github.com/pydata/pandas/issues/3729

deepgraph Documentation, Release 0.2.3

(continued from previous page)

... same_color = color_s == color_t

... larger_than = size_s > size_t

... return dx, v, same_color, larger_than
>>> g.create_edges_ft(('time', 5), connectors=some_relations)
>>> g.e.rename(columns={'ft_r': 'dt'}, inplace=True)
>>> g.e['inds'] = g.e.index.values # to ease the eyes

>>> g.e
dx dt larger_than same_color v inds

s t
0 1 5.5 1 False True 5.500000 (0, 1)
2 2.3 2 False False 1.150000 (0, 2)
3 4.3 5 False True 0.860000 (0, 3)

1 2 -3.2 1 True False -3.200000 (1, 2)
3 -1.2 4 False True -0.300000 (1, 3)

2 3 2.0 3 False False 0.666667 (2, 3)
3 4 1.4 4 True False 0.350000 (3, 4)

Partitioning by the type of relation ‘larger_than’:

>>> g.partition_edges(relations='larger_than',
... relation_funcs={'dx': ['mean', 'std'],
... 'same_color': 'sum'})

n_edges same_color_sum dx_mean dx_std
larger_than
False 5 3 2.58 2.558711
True 2 0 -0.90 3.252691

A refinement of the last partition by the type of relation ‘same_color’:

>>> g.partition_edges(relations=['larger_than', 'same_color'],
... relation_funcs={'dx': ['mean', 'std'],
... 'dt': lambda x: tuple(x)})

n_edges dt_<lambda> dx_mean dx_std
larger_than same_color
False False 2 (2, 3) 2.150000 0.212132

True 3 (1, 5, 4) 2.866667 3.572581
True False 2 (1, 4) -0.900000 3.252691

Partitioning by the type of source feature ‘color’:

>>> g.partition_edges(source_features='color',
... relation_funcs={'same_color': 'sum'})

n_edges same_color
color_s
b 1 0
g 6 3

As one can see, the type of feature ‘color’ of the source nodes has been transferred to e:

>>> g.e
dx dt larger_than same_color v inds color_s

s t
0 1 5.5 1 False True 5.500000 (0, 1) g
2 2.3 2 False False 1.150000 (0, 2) g
3 4.3 5 False True 0.860000 (0, 3) g

(continues on next page)

84 Chapter 1. Contents

deepgraph Documentation, Release 0.2.3

(continued from previous page)

1 2 -3.2 1 True False -3.200000 (1, 2) g
3 -1.2 4 False True -0.300000 (1, 3) g

2 3 2.0 3 False False 0.666667 (2, 3) b
3 4 1.4 4 True False 0.350000 (3, 4) g

A further refinement of the last partition by the type of source feature ‘size’:

>>> g.partition_edges(source_features=['color', 'size'],
... relation_funcs={'same_color': 'sum',
... 'inds': lambda x: tuple(x)})

n_edges same_color inds
color_s size_s
b 2 1 0 ((2, 3),)
g 1 3 2 ((0, 1), (0, 2), (0, 3))

3 3 1 ((1, 2), (1, 3), (3, 4))

Partitioning by the types of target features (‘color’, ‘size’):

>>> g.partition_edges(target_features=['color', 'size'],
... relation_funcs={'same_color': 'sum',
... 'inds': lambda x: tuple(x)})

n_edges same_color inds
color_t size_t
b 2 2 0 ((0, 2), (1, 2))
g 3 4 3 ((0, 1), (0, 3), (1, 3), (2, 3))
r 1 1 0 ((3, 4),)

Partitioning by the type of source feature ‘color’ and the type of target feature ‘size’:

>>> g.partition_edges(source_features='color', target_features='size',
... relation_funcs={'same_color': 'sum',
... 'inds': lambda x: tuple(x)})

n_edges same_color inds
color_s size_t
b 3 1 0 ((2, 3),)
g 1 1 0 ((3, 4),)

2 2 0 ((0, 2), (1, 2))
3 3 3 ((0, 1), (0, 3), (1, 3))

A further refinement of the last partition by the type of relation ‘larger_than’:

>>> g.partition_edges(relations='larger_than',
... source_features='color', target_features='size',
... relation_funcs={'inds': lambda x: tuple(x)})

n_edges inds
larger_than color_s size_t
False b 3 1 ((2, 3),)

g 2 1 ((0, 2),)
3 3 ((0, 1), (0, 3), (1, 3))

True g 1 1 ((3, 4),)
2 1 ((1, 2),)

1.4. API Reference 85

deepgraph Documentation, Release 0.2.3

deepgraph.deepgraph.DeepGraph.partition_graph

DeepGraph.partition_graph(features, feature_funcs=None, relation_funcs=None, n_nodes=True,
n_edges=True, return_gve=False)

Return supergraph DataFrames sv and se.

This method allows partitioning of the graph represented by v and e into a supergraph, sv and se. It creates a
(intersection) partition of the nodes in v by the type(s) of feature(s) features, together with the (intersection)
partition’s corresponding partition of the edges in e.

Essentially, this method is a wrapper around pandas groupby meth-
ods: sv = v.groupby(features).agg(feature_funcs) and se =
e.groupby(features_s+features_t).agg(relation_funcs). In order to group e by features_s and fea-
tures_t, the features of type features are transferred to e, appending ‘_s’ and ‘_t’ to the corresponding
column names of e, indicating source and target features, respectively (if they are not already present).

By passing a dictionary of functions on the features (relations) of v (e), feature_funcs
(relation_funcs), one may aggregate user-defined values of the partition’s elements, the supernodes’ (su-
peredges’) features (relations). If n_nodes (n_edges) is True, create a column with the number of each
supernode’s (superedge’s) constituent nodes (edges).

If return_gve is True, return the created groupby objects to facilitate additional operations, such as
gv.apply(func, *args, **kwargs) or ge.apply(func, *args, **kwargs).

For details, type help(g.v.groupby), and/or inspect the available methods of gv.

For examples, see below. For an in-depth description and mathematical details of graph partitioning, see https:
//arxiv.org/pdf/1604.00971v1.pdf, in particular Sec. III C, E and F.

Parameters

• features (str, int or array_like) – Column name(s) of v, indicating the
type(s) of feature(s) used to induce a (intersection) partition of v, and its corresponding
partition of the edges in e. Creates pandas groupby objects, gv and ge.

• feature_funcs (dict, optional (default=None)) – Each key must be a col-
umn name of v, each value either a function, or a list of functions, working when passed a
pandas.DataFrame or when passed to pandas.DataFrame.apply. See the doc-
string of gv.agg for details: help(gv.agg).

• relation_funcs (dict, optional (default=None)) – Each key must be a
column name of e, each value either a function, or a list of functions, working when passed
a pandas.DataFrame or when passed to pandas.DataFrame.apply. See the doc-
string of ge.agg for details: help(ge.agg).

• n_nodes (bool, optional (default=True)) – Whether to create a n_nodes
column in sv, indicating the number of nodes in each supernode.

• n_edges (bool, optional (default=True)) – Whether to create a n_edges
column in se, indicating the number of edges in each superedge.

• return_gve (bool, optional (default=False)) – If True, also return the pan-
das groupby objects, gv and ge.

Returns

• sv (pd.DataFrame) – The aggreated DataFrame of supernodes, sv.

• se (pd.DataFrame) – The aggregated DataFrame of superedges, se.

• gv (pandas.core.groupby.DataFrameGroupBy) – The pandas groupby object,
v.groupby(features).

86 Chapter 1. Contents

https://arxiv.org/pdf/1604.00971v1.pdf
https://arxiv.org/pdf/1604.00971v1.pdf

deepgraph Documentation, Release 0.2.3

• ge (pandas.core.groupby.DataFrameGroupBy) – The pandas groupby object,
e.groupby(features_i+feaures_j).

See also:

partition_nodes(), partition_edges()

Notes

Currently, NA groups in GroupBy are automatically excluded (silently). One workaround is to use a placeholder
(e.g., -1, ‘none’) for NA values before doing the groupby (calling this method). See http://stackoverflow.com/
questions/18429491/groupby-columns-with-nan-missing-values and https://github.com/pydata/pandas/issues/
3729.

Examples

First, we need to create a graph in order to demonstrate its partitioning into a supergraph.

Create a node table:

>>> import pandas as pd
>>> import deepgraph as dg
>>> v = pd.DataFrame({'x': [-3.4,2.1,-1.1,0.9,2.3],
... 'time': [0,1,2,5,9],
... 'color': ['g','g','b','g','r'],
... 'size': [1,3,2,3,1]})
>>> g = dg.DeepGraph(v)

>>> g.v
color size time x

0 g 1 0 -3.4
1 g 3 1 2.1
2 b 2 2 -1.1
3 g 3 5 0.9
4 r 1 9 2.3

Create an edge table:

>>> def some_relations(ft_r, x_s,x_t,color_s,color_t,size_s,size_t):
... dx = x_t - x_s
... v = dx / ft_r
... same_color = color_s == color_t
... larger_than = size_s > size_t
... return dx, v, same_color, larger_than
>>> g.create_edges_ft(('time', 5), connectors=some_relations)
>>> g.e.rename(columns={'ft_r': 'dt'}, inplace=True)
>>> g.e['inds'] = g.e.index.values # to ease the eyes

>>> g.e
dx dt larger_than same_color v inds

s t
0 1 5.5 1 False True 5.500000 (0, 1)
2 2.3 2 False False 1.150000 (0, 2)
3 4.3 5 False True 0.860000 (0, 3)

1 2 -3.2 1 True False -3.200000 (1, 2)
3 -1.2 4 False True -0.300000 (1, 3)

(continues on next page)

1.4. API Reference 87

http://stackoverflow.com/questions/18429491/groupby-columns-with-nan-missing-values
http://stackoverflow.com/questions/18429491/groupby-columns-with-nan-missing-values
https://github.com/pydata/pandas/issues/3729
https://github.com/pydata/pandas/issues/3729

deepgraph Documentation, Release 0.2.3

(continued from previous page)

2 3 2.0 3 False False 0.666667 (2, 3)
3 4 1.4 4 True False 0.350000 (3, 4)

Create a supergraph by partitioning by the type of feature ‘color’:

>>> sv, se = g.partition_graph('color')

>>> sv
n_nodes

color
b 1
g 3
r 1

>>> se
n_edges

color_s color_t
b g 1
g b 2

g 3
r 1

Create intersection partitions by the types of features ‘color’ and ‘size’ (which are further refinements of the last
partitions):

>>> sv, se = g.partition_graph(
... ['color', 'size'],
... relation_funcs={'inds': lambda x: tuple(x)})

>>> sv
n_nodes

color size
b 2 1
g 1 1

3 2
r 1 1

>>> se
n_edges inds

color_s size_s color_t size_t
b 2 g 3 1 ((2, 3),)
g 1 b 2 1 ((0, 2),)

g 3 2 ((0, 1), (0, 3))
3 b 2 1 ((1, 2),)

g 3 1 ((1, 3),)
r 1 1 ((3, 4),)

Partition by ‘color’ and aggregate some properties:

>>> sv, se = g.partition_graph('color',
... feature_funcs={'time': lambda x: list(x)},
... relation_funcs={'larger_than': 'sum', 'same_color': 'sum'})

>>> sv
n_nodes time

(continues on next page)

88 Chapter 1. Contents

deepgraph Documentation, Release 0.2.3

(continued from previous page)

color
b 1 [2]
g 3 [0, 1, 5]
r 1 [9]

>>> se
n_edges larger_than same_color

color_s color_t
b g 1 False 0
g b 2 True 0

g 3 False 3
r 1 True 0

Graph Interfaces

DeepGraph.return_cs_graph([relations,
dropna])

Return scipy.sparse.coo_matrix representa-
tion(s).

DeepGraph.return_nx_graph([features, . . .]) Return a networkx.DiGraph representation.
DeepGraph.return_nx_multigraph([features,
. . .])

Return a networkx.MultiDiGraph representa-
tion.

DeepGraph.return_gt_graph([features, . . .]) Return a graph_tool.Graph representation.

deepgraph.deepgraph.DeepGraph.return_cs_graph

DeepGraph.return_cs_graph(relations=False, dropna=True)
Return scipy.sparse.coo_matrix representation(s).

Create a compressed sparse graph representation for each type of relation given by relations. relations
can either be False, True, or a (list of) column name(s) of e. If relations is False (default), return a single
csgraph entailing all edges in e.index, each with a weight of 1 (in that case, dropna is discarded). If
relations is True, create one csgraph for each column of e, where the weights are given by the columns’
values. If only a subset of columns is to be mapped to csgraphs, relations has to be a (list of) column
name(s) of e.

The argument dropna indicates whether to discard edges with NA values or not. If dropna is True or False,
it applies to all types of relations given by relations. However, dropna can also be array_like with the
same shape as relations (or with the same shape as e.columns, if relations is True).

Parameters

• relations (bool, str or array_like, optional (default=False)) –
The types of relations to be mapped to scipy csgraphs. Can be False, True, or a (list of)
column name(s) of e.

• dropna (bool or array_like, optional (default=True)) – Whether to
drop edges with NA values. If True or False, applies to all relations given by relations.
Otherwise, must be the same shape as relations. If relations is False, dropna is
discarded.

Returns csgraph – A dictionary, where keys are column names of e, and values are the corre-
sponding scipy.sparse.coo_matrix instance(s). If only one csgraph is created, return it
directly.

Return type scipy.sparse.coo_matrix or dict

1.4. API Reference 89

deepgraph Documentation, Release 0.2.3

See also:

return_nx_graph(), return_nx_multigraph(), return_gt_graph()

deepgraph.deepgraph.DeepGraph.return_nx_graph

DeepGraph.return_nx_graph(features=False, relations=False, dropna=’none’)
Return a networkx.DiGraph representation.

Create a networkx.DiGraph representation of the graph given by v and e. Node and edge properties to
transfer can be indicated by the features and relations input arguments. Whether to drop edges with
NA values in the subset of types of relations given by relations can be controlled by dropna.

Needs pandas >= 0.17.0.

Parameters

• features (bool, str, or array_like, optional (default=False)) –
Indicates which types of features to transfer as node attributes. Can be column name(s) of
v, False or True. If False, create no node attributes. If True, create node attributes for every
column in v. If str or array_like, must be column name(s) of v indicating which types of
features to transfer.

• relations (bool, str, or array_like, optional (default=False))
– Indicates which types of relations to transfer as edge attributes. Can be column name(s) of
e, False or True. If False, create no edge attributes (all edges in e.index are transferred,
regardless of dropna). If True, create edge attributes for every column in e (all edges
in e.index are transferred, regardless of dropna). If str or array_like, must be column
name(s) of e indicating which types of relations to transfer (which edges are transferred can
be controlled by dropna).

• dropna (str, optional (default='none')) – One of {‘none’,’any’,’all’}. If
‘none’, all edges in e.index are transferred. If ‘any’, drop all edges (rows) in
e[relations] where any NA values are present. If ‘all’, drop all edges (rows) in
e[relations] where all values are NA. Only has an effect if relations is str or
array_like.

Returns nx_g

Return type networkx.DiGraph

See also:

return_nx_multigraph(), return_cs_graph(), return_gt_graph()

deepgraph.deepgraph.DeepGraph.return_nx_multigraph

DeepGraph.return_nx_multigraph(features=False, relations=False, dropna=True)
Return a networkx.MultiDiGraph representation.

Create a networkx.MultiDiGraph representation of the graph given by v and e. As opposed to
return_nx_graph, where every row of e is treated as one edge, this method treats every cell of e as one
edge. The input argument features indicates which node properties to transfer. relations indicates which
edges to transfer. Whether to drop edges with NA values can be controlled by dropna.

Needs pandas >= 0.17.0.

Parameters

90 Chapter 1. Contents

deepgraph Documentation, Release 0.2.3

• features (bool, str, or array_like, optional (default=False)) –
Indicates which types of features to transfer as node attributes. Can be column name(s) of
v, False or True. If False, create no node attributes. If True, create node attributes for every
column in v. If str or array_like, must be column name(s) of v indicating which types of
features to transfer.

• relations (bool, str, or array_like, optional (default=False))
– Indicates which cells of e to transfer as edges. Can be False, True, or a (list of) column
name(s) of e. If False (default), all cells of e are translated to edges, but their values are not
transferred as edge attributes. If True, all cells of e are translated, and their values are trans-
ferred as edge attributes. If str or array_like, must be column name(s) of e, restricting the
translation of cells to edges to e[relations] (values are transferred as edge attributes).

• dropna (bool, optional (default=True)) – Whether to drop edges with NA
values. Cells in e with NA values are not translated to edges.

Returns nx_g

Return type networkx.MultiDiGraph

See also:

return_nx_graph(), return_cs_graph(), return_gt_graph()

deepgraph.deepgraph.DeepGraph.return_gt_graph

DeepGraph.return_gt_graph(features=False, relations=False, dropna=’none’, node_indices=False,
edge_indices=False)

Return a graph_tool.Graph representation.

Create a graph_tool.Graph (directed) representation of the graph given by v and e. Node and edge
properties to transfer can be indicated by the features and relations input arguments. Whether to drop
edges with NA values in the subset of types of relations given by relations can be controlled by dropna.
If the nodes in v are not indexed by consecutive integers starting from 0, one may internalize the original node
and edge indices as propertymaps by setting node_indices and/or edge_indices to True.

Parameters

• features (bool, str, or array_like, optional (default=False)) –
Indicates which types of features to internalize as graph_tool.PropertyMap. Can
be column name(s) of v, False or True. If False, create no propertymaps. If True, create
propertymaps for every column in v. If str or array_like, must be column name(s) of v
indicating which types of features to internalize.

• relations (bool, str, or array_like, optional (default=False))
– Indicates which types of relations to internalize as graph_tool.PropertyMap. Can
be column name(s) of e, False or True. If False, create no propertymaps (all edges in
e.index are transferred, regardless of dropna). If True, create propertymaps for every
column in e (all edges in e.index are transferred, regardless of dropna). If str or ar-
ray_like, must be column name(s) of e indicating which types of relations to internalize
(which edges are transferred can be controlled by dropna).

• dropna (str, optional (default='none')) – One of {‘none’,’any’,’all’}. If
‘none’, all edges in e.index are transferred. If ‘any’, drop all edges (rows) in
e[relations] where any NA values are present. If ‘all’, drop all edges (rows) in
e[relations] where all values are NA. Only has an effect if relations is str or
array_like.

1.4. API Reference 91

deepgraph Documentation, Release 0.2.3

• node_indices (bool, optional (default=False)) – If True, internalize a
vertex propertymap i with the original node indices.

• edge_indices (bool, optional (default=False)) – If True, internalize edge
propertymaps s and t with the original source and target node indices of the edges, respec-
tively.

Returns gt_g

Return type graph_tool.Graph

See also:

return_cs_graph(), return_nx_graph(), return_nx_multigraph()

Notes

If the index of v is not pd.RangeIndex(start=0,stop=len(v), step=1), the indices will be enumerated, which is
expensive for large graphs.

Plotting Methods

DeepGraph.plot_2d(x, y[, edges, C, . . .]) Plot nodes and corresponding edges in 2 dimensions.
DeepGraph.plot_2d_generator(x, y, by[, . . .]) Plot nodes and corresponding edges by groups.
DeepGraph.plot_map(lon, lat[, edges, C, . . .]) Plot nodes and corresponding edges on a basemap.
DeepGraph.plot_map_generator(lon, lat, by[,
. . .])

Plot nodes and corresponding edges by groups, on
basemaps.

DeepGraph.plot_hist(x[, bins, log_bins, . . .]) Plot a histogram (or pdf) of x.
DeepGraph.plot_logfile(logfile) Plot a logfile.

deepgraph.deepgraph.DeepGraph.plot_2d

DeepGraph.plot_2d(x, y, edges=False, C=None, C_split_0=None, kwds_scatter=None,
kwds_quiver=None, kwds_quiver_0=None, ax=None)

Plot nodes and corresponding edges in 2 dimensions.

Create a scatter plot of the nodes in v, and optionally a quiver plot of the corresponding edges in e.

The xy-coordinates of the scatter plot are determined by the values of v[x] and v[y], where x and y are
column names of v (the arrow’s coordinates are determined automatically).

In order to map colors to the arrows, either C or C_split_0 can be be passed, an array of the same length as
e. Passing C creates a single quiver plot (qu). Passing C_split_0 creates two separate quiver plots, one for
all edges where C_split_0 == 0 (qu_0), and one for all other edges (qu). By default, the arrows of qu_0 have
no head, indicating “undirected” edges. This can be useful, for instance, when C_split_0 represents an array
of temporal distances.

In order to control the plotting parameters of the scatter, quiver and/or quiver_0 plots, one may pass keyword
arguments by setting kwds_scatter, kwds_quiver and/or kwds_quiver_0.

Can be used iteratively by passing ax.

Parameters

• x (int or str) – A column name of v, determining the x-coordinates of the scatter plot
of nodes.

92 Chapter 1. Contents

deepgraph Documentation, Release 0.2.3

• y (int or str) – A column name of v, determining the y-coordinates of the scatter plot
of nodes.

• edges (bool, optional (default=True)) – Whether to create a quiver plot (2-D
field of arrows) of the edges between the nodes.

• C (array_like, optional (default=None)) – An optional array used to map
colors to the arrows. Must have the same length es e. Has no effect if C_split_0 is
passed as an argument.

• C_split_0 (array_like, optional (default=None)) – An optional array
used to map colors to the arrows. Must have the same length es e. If this parameter is
passed, C has no effect, and two separate quiver plots are created (qu and qu_0).

• kwds_scatter (dict, optional (default=None)) – kwargs to be passed to
scatter.

• kwds_quiver (dict, optional (default=None)) – kwargs to be passed to
quiver (qu).

• kwds_quiver_0 (dict, optional (default=None)) – kwargs to be passed to
quiver (qu_0). Only has an effect if C_split_0 has been set.

• ax (matplotlib axes object, optional (default=None)) – An axes in-
stance to use.

Returns obj – If C_split_0 has been passed, return a dict of matplotlib objects with the following
keys: [‘fig’, ‘ax’, ‘pc’, ‘qu’, ‘qu_0’]. Otherwise, return a dict with keys: [‘fig’, ‘ax’, ‘pc’, ‘qu’].

Return type dict

Notes

When passing C_split_0, the color of the arrows in qu_0 can be set by passing the keyword argument color
to kwds_quiver_0. The color of the arrows in qu, however, are determined by C_split_0.

The default drawing order is set to: 1. quiver_0 (zorder=1) 2. quiver (zorder=2) 3. scatter (zorder=3) This order
can be changed by setting the zorder in kwds_quiver_0, kwds_quiver and/or kwds_scatter. See
also http://matplotlib.org/examples/pylab_examples/zorder_demo.html

See also:

plot_2d_generator(), plot_3d(), plot_map(), plot_map_generator()

deepgraph.deepgraph.DeepGraph.plot_2d_generator

DeepGraph.plot_2d_generator(x, y, by, edges=False, C=None, C_split_0=None,
kwds_scatter=None, kwds_quiver=None, kwds_quiver_0=None,
passable_ax=False)

Plot nodes and corresponding edges by groups.

Create a generator of scatter plots of the nodes in v, split in groups by v.groupby(by). If edges is set True, also
create a quiver plot of each group’s corresponding edges.

The xy-coordinates of the scatter plots are determined by the values of v[x] and v[y], where x and y are
column names of v (the arrow’s coordinates are determined automatically).

In order to map colors to the arrows, either C or C_split_0 can be be passed, an array of the same length as
e. Passing C creates a single quiver plot (qu). Passing C_split_0 creates two separate quiver plots, one for
all edges where C_split_0 == 0 (qu_0), and one for all other edges (qu). By default, the arrows of qu_0 have

1.4. API Reference 93

http://matplotlib.org/examples/pylab_examples/zorder_demo.html

deepgraph Documentation, Release 0.2.3

no head, indicating “undirected” edges. This can be useful, for instance, when C_split_0 represents an array
of temporal distances.

When mapping colors to arrows by setting C (or C_split_0), clim is automatically set to the min and max
values of the entire array. In case one wants clim to be set to min and max values for each group’s colors, one
may explicitly pass clim = None to kwds_quiver.

The same behaviour occurs when passing a sequence of g.n Numbers as colors c to kwds_scatter. In that
case, vmin and vmax are automatically set to c.min() and c.max() of all nodes. Explicitly setting vmin and vmax
to None, the min and max values of the groups’ color arrays are used.

In order to control the plotting parameters of the scatter, quiver and/or quiver_0 plots, one may pass keyword
arguments by setting kwds_scatter, kwds_quiver and/or kwds_quiver_0.

If passable_ax is True, create a generator of functions. Each function takes a matplotlib axes object as input,
and returns a scatter/quiver plot.

Parameters

• x (int or str) – A column name of v, determining the x-coordinates of the scatter plot
of nodes.

• y (int or str) – A column name of v, determining the y-coordinates of the scatter plot
of nodes.

• by (array_like) – Column name(s) of v, determining the groups to create plots of.

• edges (bool, optional (default=True)) – Whether to create a quiver plot (2-D
field of arrows) of the edges between the nodes.

• C (array_like, optional (default=None)) – An optional array used to map
colors to the arrows. Must have the same length es e. Has no effect if C_split_0 is
passed as an argument.

• C_split_0 (array_like, optional (default=None)) – An optional array
used to map colors to the arrows. Must have the same length es e. If this parameter is
passed, C has no effect, and two separate quiver plots are created (qu and qu_0).

• kwds_scatter (dict, optional (default=None)) – kwargs to be passed to
scatter.

• kwds_quiver (dict, optional (default=None)) – kwargs to be passed to
quiver (qu).

• kwds_quiver_0 (dict, optional (default=None)) – kwargs to be passed to
quiver (qu_0). Only has an effect if C_split_0 has been set.

• passable_ax (bool, optional (default=False)) – If True, return a generator
of functions. Each function takes a matplotlib axes object as input, and returns a dict of
matplotlib objects.

Returns obj – If C_split_0 has been passed, return a generator of dicts of matplotlib objects
with the following keys: [‘fig’, ‘ax’, ‘pc’, ‘qu’, ‘qu_0’, ‘group’]. Otherwise, return a generator
of dicts with keys: [‘fig’, ‘ax’, ‘pc’, ‘qu’, ‘group’]. If passable_ax is True, return a generator
of functions. Each function takes a matplotlib axes object as input, and returns a dict as described
above.

Return type generator

94 Chapter 1. Contents

deepgraph Documentation, Release 0.2.3

Notes

When passing C_split_0, the color of the arrows in qu_0 can be set by passing the keyword argument color
to kwds_quiver_0. The color of the arrows in qu, however, are determined by C_split_0.

The default drawing order is set to: 1. quiver_0 (zorder=1) 2. quiver (zorder=2) 3. scatter (zorder=3) This order
can be changed by setting the zorder in kwds_quiver_0, kwds_quiver and/or kwds_scatter. See
also http://matplotlib.org/examples/pylab_examples/zorder_demo.html

See also:

append_binning_labels_v(), plot_2d(), plot_3d(), plot_map(),
plot_map_generator()

deepgraph.deepgraph.DeepGraph.plot_map

DeepGraph.plot_map(lon, lat, edges=False, C=None, C_split_0=None, kwds_basemap=None,
kwds_scatter=None, kwds_quiver=None, kwds_quiver_0=None, ax=None,
m=None)

Plot nodes and corresponding edges on a basemap.

Create a scatter plot of the nodes in v and optionally a quiver plot of the corresponding edges in e on a
mpl_toolkits.basemap.Basemap instance.

The coordinates of the scatter plot are determined by the node’s longitudes and latitudes (in degrees): v[lon]
and v[lat], where lon and lat are column names of v (the arrow’s coordinates are determined automati-
cally).

In order to map colors to the arrows, either C or C_split_0 can be be passed, an array of the same length as
e. Passing C creates a single quiver plot (qu). Passing C_split_0 creates two separate quiver plots, one for
all edges where C_split_0 == 0 (qu_0), and one for all other edges (qu). By default, the arrows of qu_0 have
no head, indicating “undirected” edges. This can be useful, for instance, when C_split_0 represents an array
of temporal distances.

In order to control the parameters of the basemap, scatter, quiver and/or quiver_0 plots, one may pass keyword
arguments by setting kwds_basemap, kwds_scatter, kwds_quiver and/or kwds_quiver_0.

Can be used iteratively by passing ax and/or m.

Parameters

• lon (int or str) – A column name of v. The corresponding values must be longitudes
in degrees.

• lat (int or str) – A column name of v. The corresponding values must be latitudes
in degrees.

• edges (bool, optional (default=True)) – Whether to create a quiver plot (2-D
field of arrows) of the edges between the nodes.

• C (array_like, optional (default=None)) – An optional array used to map
colors to the arrows. Must have the same length es e. Has no effect if C_split_0 is
passed as an argument.

• C_split_0 (array_like, optional (default=None)) – An optional array
used to map colors to the arrows. Must have the same length es e. If this parameter is
passed, C has no effect, and two separate quiver plots are created (qu and qu_0).

• kwds_basemap (dict, optional (default=None)) – kwargs passed to
basemap.

1.4. API Reference 95

http://matplotlib.org/examples/pylab_examples/zorder_demo.html

deepgraph Documentation, Release 0.2.3

• kwds_scatter (dict, optional (default=None)) – kwargs to be passed to
scatter.

• kwds_quiver (dict, optional (default=None)) – kwargs to be passed to
quiver (qu).

• kwds_quiver_0 (dict, optional (default=None)) – kwargs to be passed to
quiver (qu_0). Only has an effect if C_split_0 has been set.

• ax (matplotlib axes object, optional (default=None)) – An axes in-
stance to use.

• m (Basemap object, optional (default=None)) – A
mpl_toolkits.basemap.Basemap instance to use.

Returns obj – If C_split_0 has been passed, return a dict of matplotlib objects with the following
keys: [‘fig’, ‘ax’, ‘m’, ‘pc’, ‘qu’, ‘qu_0’]. Otherwise, return a dict with keys: [‘fig’, ‘ax’, ‘m’,
‘pc’, ‘qu’].

Return type dict

Notes

When passing C_split_0, the color of the arrows in qu_0 can be set by passing the keyword argument color
to kwds_quiver_0. The color of the arrows in qu, however, are determined by C_split_0.

The default drawing order is set to: 1. quiver_0 (zorder=1) 2. quiver (zorder=2) 3. scatter (zorder=3) This order
can be changed by setting the zorder in kwds_quiver_0, kwds_quiver and/or kwds_scatter. See
also http://matplotlib.org/examples/pylab_examples/zorder_demo.html

See also:

plot_map_generator(), plot_2d(), plot_2d_generator(), plot_3d()

deepgraph.deepgraph.DeepGraph.plot_map_generator

DeepGraph.plot_map_generator(lon, lat, by, edges=False, C=None, C_split_0=None,
kwds_basemap=None, kwds_scatter=None, kwds_quiver=None,
kwds_quiver_0=None, passable_ax=False)

Plot nodes and corresponding edges by groups, on basemaps.

Create a generator of scatter plots of the nodes in v, split in groups by v.groupby(by), on a mpl_toolkits.
basemap.Basemap instance. If edges is set True, also create a quiver plot of each group’s corresponding
edges.

The coordinates of the scatter plots are determined by the node’s longitudes and latitudes (in degrees): v[lon]
and v[lat], where lon and lat are column names of v (the arrow’s coordinates are determined automati-
cally).

In order to map colors to the arrows, either C or C_split_0 can be be passed, an array of the same length as
e. Passing C creates a single quiver plot (qu). Passing C_split_0 creates two separate quiver plots, one for
all edges where C_split_0 == 0 (qu_0), and one for all other edges (qu). By default, the arrows of qu_0 have
no head, indicating “undirected” edges. This can be useful, for instance, when C_split_0 represents an array
of temporal distances.

When mapping colors to arrows by setting C (or C_split_0), clim is automatically set to the min and max
values of the entire array. In case one wants clim to be set to min and max values for each group’s colors, one
may explicitly pass clim = None to kwds_quiver.

96 Chapter 1. Contents

http://matplotlib.org/examples/pylab_examples/zorder_demo.html

deepgraph Documentation, Release 0.2.3

The same behaviour occurs when passing a sequence of g.n Numbers as colors c to kwds_scatter. In that
case, vmin and vmax are automatically set to c.min() and c.max() of all nodes. Explicitly setting vmin and vmax
to None, the min and max values of the groups’ color arrays are used.

In order to control the parameters of the basemap, scatter, quiver and/or quiver_0 plots, one may pass keyword
arguments by setting kwds_basemap, kwds_scatter, kwds_quiver and/or kwds_quiver_0.

If passable_ax is True, create a generator of functions. Each function takes a matplotlib axes object (and/or
a Basemap object) as input, and returns a scatter/quiver plot.

Parameters

• lon (int or str) – A column name of v. The corresponding values must be longitudes
in degrees.

• lat (int or str) – A column name of v. The corresponding values must be latitudes
in degrees.

• by (array_like) – Column name(s) of v, determining the groups to create plots of.

• edges (bool, optional (default=True)) – Whether to create a quiver plot (2-D
field of arrows) of the edges between the nodes.

• C (array_like, optional (default=None)) – An optional array used to map
colors to the arrows. Must have the same length es e. Has no effect if C_split_0 is
passed as an argument.

• C_split_0 (array_like, optional (default=None)) – An optional array
used to map colors to the arrows. Must have the same length es e. If this parameter is
passed, C has no effect, and two separate quiver plots are created (qu and qu_0).

• kwds_basemap (dict, optional (default=None)) – kwargs passed to
basemap.

• kwds_scatter (dict, optional (default=None)) – kwargs to be passed to
scatter.

• kwds_quiver (dict, optional (default=None)) – kwargs to be passed to
quiver (qu).

• kwds_quiver_0 (dict, optional (default=None)) – kwargs to be passed to
quiver (qu_0). Only has an effect if C_split_0 has been set.

• passable_ax (bool, optional (default=False)) – If True, return a generator
of functions. Each function takes a matplotlib axes object (and/or a Basemap object) as
input, and returns a dict of matplotlib objects.

Returns obj – If C_split_0 has been passed, return a generator of dicts of matplotlib objects with
the following keys: [‘fig’, ‘ax’, ‘m’, ‘pc’, ‘qu’, ‘qu_0’, ‘group’]. Otherwise, return a generator
of dicts with keys: [‘fig’, ‘ax’, ‘m’, ‘pc’, ‘qu’, ‘group’]. If passable_ax is True, return a
generator of functions. Each function takes a matplotlib axes object (and/or a Basemap object)
as input, and returns a dict as described above.

Return type generator

Notes

When passing C_split_0, the color of the arrows in qu_0 can be set by passing the keyword argument color
to kwds_quiver_0. The color of the arrows in qu, however, are determined by C_split_0.

1.4. API Reference 97

deepgraph Documentation, Release 0.2.3

The default drawing order is set to: 1. quiver_0 (zorder=1) 2. quiver (zorder=2) 3. scatter (zorder=3) This order
can be changed by setting the zorder in kwds_quiver_0, kwds_quiver and/or kwds_scatter. See
also http://matplotlib.org/examples/pylab_examples/zorder_demo.html

See also:

append_binning_labels_v(), plot_map(), plot_2d(), plot_2d_generator(),
plot_3d()

deepgraph.deepgraph.DeepGraph.plot_hist

static DeepGraph.plot_hist(x, bins=10, log_bins=False, density=False, floor=False, ax=None,
**kwargs)

Plot a histogram (or pdf) of x.

Compute and plot the histogram (or probability density) of x. Keyword arguments are passed to plt.plot. See
parameters and np.histogram for details.

Parameters

• x (array_like) – The data from which a frequency distribution is plot.

• bins (int or array_like, optional (default=10)) – If bins is an int, it
determines the number of bins to create. If log_bins is True, this number determines
the (approximate) number of bins to create for each magnitude. For linear bins, it is the
number of bins for the whole range of values. If bins is a sequence, it defines the bin
edges, including the rightmost edge, allowing for non-uniform bin widths.

• log_bins (bool, optional (default=False)) – Whether to use logarithmi-
cally or linearly spaced bins.

• density (bool, optional (default=False)) – If False, the result will contain
the number of samples in each bin. If True, the result is the value of the probability density
function at the bin, normalized such that the integral over the range is 1. Note that the sum
of the histogram values will not be equal to 1 unless bins of unity width are chosen; it is not
a probability mass function.

• floor (bool, optional (default=False)) – Whether to floor the bin edges to
the closest integers. Only has an effect if bins is an int.

• ax (matplotlib axes object, optional (default=None)) – An axes in-
stance to use.

Returns

• ax (matplotlib axes object) – A matplotlib axes instance.

• hist (np.ndarray) – The values of the histogram. See density.

• bin_edges (np.ndarray) – The edges of the bins.

deepgraph.deepgraph.DeepGraph.plot_logfile

static DeepGraph.plot_logfile(logfile)
Plot a logfile.

Plot a benchmark logfile created by create_edges or create_edges_ft.

Parameters logfile (str) – The filename of the logfile.

98 Chapter 1. Contents

http://matplotlib.org/examples/pylab_examples/zorder_demo.html

deepgraph Documentation, Release 0.2.3

Returns obj – Depending on the logfile, return a dict of matplotlib objects with a subset of the
following keys: [‘fig’, ‘ax’, ‘pc_n’, ‘pc_e’, ‘cb_n’, ‘cb_e’]

Return type dict

Other Methods

DeepGraph.append_binning_labels_v(col,
col_name)

Append a column with binning labels of the values in
v[col].

DeepGraph.append_cp([directed, connection,
. . .])

Append a component membership column to v.

DeepGraph.filter_by_values_v(col, values) Keep only nodes in v with features of type col in
values.

DeepGraph.filter_by_values_e(col, values) Keep only edges in e with relations of type col in
values.

DeepGraph.filter_by_interval_v(col,
interval)

Keep only nodes in v with features of type col in
interval.

DeepGraph.filter_by_interval_e(col, inter-
val)

Keep only edges in e with relations of type col in
interval.

DeepGraph.update_edges() After removing nodes in v, update e.

deepgraph.deepgraph.DeepGraph.append_binning_labels_v

DeepGraph.append_binning_labels_v(col, col_name, bins=10, log_bins=False, floor=False, re-
turn_bin_edges=False)

Append a column with binning labels of the values in v[col].

Append a column col_name to v with the indices of the bins to which each value in v[col] belongs to.

If bins is an int, it determines the number of bins to create. If log_bins is True, this number determines the
(approximate) number of bins to create for each magnitude. For linear bins, it is the number of bins for the whole
range of values. If floor is set True, the bin edges are floored to the closest integer. If return_bin_edges
is set True, the created bin edges are returned.

If bins is a sequence, it defines the bin edges, including the rightmost edge, allowing for non-uniform bin
widths.

See np.digitize for details.

Parameters

• col (int or str) – A column name of v, whose corresponding values are binned and
labelled.

• col_name (str) – The column name for the created labels.

• bins (int or array_lke, optional (default=10)) – If bins is an int, it
determines the number of bins to create. If log_bins is True, this number determines
the (approximate) number of bins to create for each magnitude. For linear bins, it is the
number of bins for the whole range of values. If bins is a sequence, it defines the bin
edges, including the rightmost edge, allowing for non-uniform bin widths.

• log_bins (bool, optional (default=False)) – Whether to use logarithmi-
cally or linearly spaced bins.

• floor (bool, optional (default=False)) – Whether to floor the bin edges to
the closest integers.

1.4. API Reference 99

deepgraph Documentation, Release 0.2.3

• return_bin_edges (bool, optional (default=False)) – Whether to return
the bin edges.

Returns

• v (pd.DataFrame) – Appends an extra column col_name to v with the binning labels.

• bin_edges (np.ndarray) – Optionally, return the created bin edges.

Examples

First, we need a node table:

>>> import pandas as pd
>>> import deepgraph as dg
>>> v = pd.DataFrame({'time': [1,2,12,105,899]})
>>> g = dg.DeepGraph(v)

>>> g.v
time

0 1
1 2
2 12
3 105
4 899

Binning time values with default arguments:

>>> bin_edges = g.append_binning_labels_v('time', 'time_l',
... return_bin_edges=True)

>>> bin_edges
array([1. , 100.77777778, 200.55555556, 300.33333333,

400.11111111, 499.88888889, 599.66666667, 699.44444444,
799.22222222, 899.])

>>> g.v
time time_l

0 1 1
1 2 1
2 12 1
3 105 2
4 899 10

Binning time values with logarithmically spaced bins:

>>> bin_edges = g.append_binning_labels_v('time', 'time_l', bins=5,
... log_bins=True,
... return_bin_edges=True)

>>> bin_edges
array([1. , 1.62548451, 2.64219989, 4.29485499,

6.98122026, 11.34786539, 18.44577941, 29.9833287 ,
48.73743635, 79.22194781, 128.77404899, 209.32022185,

340.24677814, 553.06586728, 899.])

100 Chapter 1. Contents

deepgraph Documentation, Release 0.2.3

>>> g.v
time time_l

0 1 1
1 2 2
2 12 6
3 105 10
4 899 15

Binning time values with logarithmically spaced bins (floored):

>>> bin_edges = g.append_binning_labels_v('time', 'time_l', bins=5,
... log_bins=True, floor=True,
... return_bin_edges=True)

>>> bin_edges
array([1., 2., 4., 6., 11., 18., 29., 48., 79.,

128., 209., 340., 553., 899.])

>>> g.v
time time_l

0 1 1
1 2 2
2 12 5
3 105 9
4 899 14

deepgraph.deepgraph.DeepGraph.append_cp

DeepGraph.append_cp(directed=False, connection=’weak’, col_name=’cp’, label_by_size=True, con-
solidate_singles=False)

Append a component membership column to v.

Append a column to v indicating the component membership of each node. Requires scipy.

Parameters

• directed (bool, optional (default=False)) – If True , then operate on a di-
rected graph: only move from point i to point j along paths csgraph[i, j]. If False, then find
the shortest path on an undirected graph: the algorithm can progress from point i to j along
csgraph[i, j] or csgraph[j, i].

• connection (str, optional (default='weak')) – One of {‘weak’,’strong’}.
For directed graphs, the type of connection to use. Nodes i and j are strongly connected if a
path exists both from i to j and from j to i. Nodes i and j are weakly connected if only one
of these paths exists. Only has an effect if directed is True

• col_name (str, optional (default='cp')) – The name of the appended col-
umn of component labels.

• label_by_size (bool, optional (default=True)) – Whether to rename
component membership labels to reflect component sizes. If True, the smallest compo-
nent corresponds to the largest label, and the largest component corresponds to the label
0 (or 1 if consolidate_singles is True). If False, pass on labels given by scipy’s
connected_components method directly (faster and uses less memory).

• consolidate_singles (bool, optional (default=False)) – If True, all
singular components (components comprised of one node only) are consolidated un-

1.4. API Reference 101

deepgraph Documentation, Release 0.2.3

der the label 0. Also, all other labels are renamed to reflect component sizes, see
label_by_size.

Returns v – appends an extra column to v indicating component membership.

Return type pd.DataFrame

deepgraph.deepgraph.DeepGraph.filter_by_values_v

DeepGraph.filter_by_values_v(col, values)
Keep only nodes in v with features of type col in values.

Remove all nodes from v (and their corresponding edges in e) with feature(s) of type col not in the list of
features given by values.

Parameters

• col (str or int) – A column name of v, indicating the type of feature used in the
filtering.

• values (object or array_like) – The value(s) indicating which nodes to keep.

Returns

• v (pd.DataFrame) – update v

• e (pd.DataFrame) – update e

deepgraph.deepgraph.DeepGraph.filter_by_values_e

DeepGraph.filter_by_values_e(col, values)
Keep only edges in e with relations of type col in values.

Remove all edges from e with relation(s) of type col not in the list of relations given by values.

Parameters

• col (str or int) – A column name of e, indicating the type of relation used in the
filtering.

• values (object or array_like) – The value(s) indicating which edges to keep.

Returns e – update e

Return type pd.DataFrame

deepgraph.deepgraph.DeepGraph.filter_by_interval_v

DeepGraph.filter_by_interval_v(col, interval, endpoint=True)
Keep only nodes in v with features of type col in interval.

Remove all nodes from v (and their corresponding edges in e) with features of type col outside the interval
given by a tuple of values. The endpoint is included, if endpoint is not set to False.

Parameters

• col (str or int) – A column name of v, indicating the type of feature used in the
filtering.

102 Chapter 1. Contents

deepgraph Documentation, Release 0.2.3

• interval (tuple) – A tuple of two values, (value, larger_value). All nodes outside the
interval are removed.

• endpoint (bool, optional (default=True)) – False excludes the endpoint.

Returns

• v (pd.DataFrame) – update v

• e (pd.DataFrame) – update e

deepgraph.deepgraph.DeepGraph.filter_by_interval_e

DeepGraph.filter_by_interval_e(col, interval, endpoint=True)
Keep only edges in e with relations of type col in interval.

Remove all edges from e with relations of type col outside the interval given by a tuple of values. The endpoint
is included, if endpoint is not set to False.

Parameters

• col (str or int) – A column name of e, indicating the type of relation used in the
filtering.

• interval (tuple) – A tuple of two values, (value, larger_value). All edges outside the
interval are removed.

• endpoint (bool, optional (default=True)) – False excludes the endpoint.

Returns e – update e

Return type pd.DataFrame

deepgraph.deepgraph.DeepGraph.update_edges

DeepGraph.update_edges()
After removing nodes in v, update e.

If you deleted rows from v, you can remove all edges associated with the deleted nodes in e by calling this
method.

Returns e – update e

Return type pd.DataFrame

1.4.2 The Functions Module

deepgraph.functions

Connector Functions

great_circle_dist
cp_node_intersection
cp_intersection_strength
hypergeometric_p_value

1.4. API Reference 103

deepgraph Documentation, Release 0.2.3

Selector Functions

1.5 Contact

1.5.1 Email

Please feel free to contact me if you have questions or suggestions regarding DeepGraph:

Dominik Traxl <dominik.traxl@posteo.org>

1.5.2 Authors

Deepgraph was written as part of a PhD thesis in physics by Dominik Traxl at Humboldt University Berlin, the Berstein
Center for Computational Neuroscience and the Potsdam Institute for Climate Impact Research.

104 Chapter 1. Contents

https://www.hu-berlin.de/en
https://www.bccn-berlin.de
https://www.bccn-berlin.de
https://www.pik-potsdam.de/

CHAPTER 2

Indices and tables

• genindex

• modindex

• search

105

deepgraph Documentation, Release 0.2.3

106 Chapter 2. Indices and tables

Index

Symbols
__init__() (DeepGraph method), 68

A
append_binning_labels_v() (DeepGraph

method), 99
append_cp() (DeepGraph method), 101

C
create_edges() (DeepGraph method), 69
create_edges_ft() (DeepGraph method), 74

D
DeepGraph (class in deepgraph.deepgraph), 66

E
e (DeepGraph attribute), 67

F
f (DeepGraph attribute), 67
filter_by_interval_e() (DeepGraph method),

103
filter_by_interval_v() (DeepGraph method),

102
filter_by_values_e() (DeepGraph method), 102
filter_by_values_v() (DeepGraph method), 102

M
m (DeepGraph attribute), 67

N
n (DeepGraph attribute), 67

P
partition_edges() (DeepGraph method), 82
partition_graph() (DeepGraph method), 86
partition_nodes() (DeepGraph method), 80
plot_2d() (DeepGraph method), 92

plot_2d_generator() (DeepGraph method), 93
plot_hist() (DeepGraph static method), 98
plot_logfile() (DeepGraph static method), 98
plot_map() (DeepGraph method), 95
plot_map_generator() (DeepGraph method), 96

R
r (DeepGraph attribute), 67
return_cs_graph() (DeepGraph method), 89
return_gt_graph() (DeepGraph method), 91
return_nx_graph() (DeepGraph method), 90
return_nx_multigraph() (DeepGraph method),

90

U
update_edges() (DeepGraph method), 103

V
v (DeepGraph attribute), 67

107

	Contents
	What is DeepGraph
	Installation
	Tutorials
	API Reference
	Contact

	Indices and tables
	Index

